633 resultados para Cambrian explosion
Resumo:
Apatite fission track (FT) ages and length characteristics of samples obtained from Cambrian to Paleocene-aged sandstones collected along the margin of Nares Strait in Ellesmere Island in the Canadian Arctic Archipelago are dominated by a thermal history related to Paleogene relative plate movements between Greenland and Ellesmere Island. A preliminary inverse FT thermal model for a Cambrian (Archer Fiord Formation) sandstone in the hanging wall of the Rawlings Bay thrust at Cape Lawrence is consistent with Paleocene exhumational cooling, likely as a result of erosion of the thrust. This suggests that thrusting at Cape Lawrence occurred prior to the onset of Eocene compression, likely due to transpression during earlier strikeslip along the strait. Models for samples from volcaniclastic sandstones of the Late Paleocene Pavy Formation (from Cape Back and near Pavy River), and a sandstone from the Late Paleocene Mount Lawson Formation (at Split Lake, near Makinson Inlet) are also consistent with minor burial heating following known periods of basaltic volcanism in Baffin Bay and Davis Strait (c. 61-59 Ma), or related tholeiitic volcanism and intrusive activity (c. 55-54 Ma). Thermal models for samples from sea level dykes from around Smith Sound suggest a period of Late Cretaceous - Paleocene heating prior to final cooling during Paleocene time. These model results imply that Paleocene tectonic movements along Nares Strait were significant, and provide limited support for the former existence of the Wegener Fault. Apatite FT data from central Ellesmere Island suggest however, that cooling there occurred during Early Eocene time (c. 50 Ma), which was likely a result of erosion of thrusts during Eurekan compression. This diachronous cooling suggests that Eurekan deformation was partitioned at discrete intervals across Ellesmere Island, and thus it is likely that displacements along the strait were much less than the 150 km that has been previously suggested for the Wegener Fault.
Resumo:
Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.
Resumo:
Lower Miocene basaltic glass spherules from DSDP Site 32 pelagic sediments in the eastern Pacific are compositionally diverse, and new analyses and interpretations have been added to those of earlier workers. The spherules are of titanian ferrobasalt which is compositionally similar to highly evolved abyssal basalts and to some oceanic island eruptives, and they were most likely shaped during intense lava fountaining during a number of separate eruptions. These eruptions tapped distinct but related magma batches in terms, for example, of distinctively high TiO2 and FeO* contents. Their age overlaps that of some of the eruptions of the Columbia River Plateau Basalts, but they are compositionally distinct from most of the latter basalts. Although about 15 m.y. old, they show little alteration. The low chlorine and sulfur contents compared to those of abyssal ferrobasalts are consistent with degassing prior to quenching during subaerial eruptions, and rule out production of the spherules by submarine fountaining. Lava fountaining alone is insufficient to account for the distance of about 100 km from even the closest possible seamount source. Instead, large phreatomagmatic eruption columns reaching at least 15 km and including lava fountaining immediately after the initial explosion are required. Alternatively, and deemed less likely, is their deposition by turbidites derived from Pioneer Seamount.
Resumo:
The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.
Resumo:
We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.
Resumo:
Metasediments in the three early Palaeozoic Ross orogenic terranes in northern Victoria Land and Oates Land (Antarctica) are geochemically classified as immature litharenites to wackes and moderately mature shales. Highly mature lithotypes with Chemical Index of Weathering values of >=95 are typically absent. Geochemical and Rb-Sr and Sm-Nd isotope results indicate that the turbiditic metasediments of the Cambro-Ordovician Robertson Bay Group in the eastern Robertson Bay Terrane represent a very homogeneous series lacking significant compositional variations. Major variations are only found in chemical parameters which reflect differences in degree of chemical weathering of their protoliths and in mechanical sorting of the detritus. Geochemical data, 87Sr/ 86Sr t=490 Ma ratios of 0.7120 - 0.7174, epsilonNd, t=490 Ma values of -7.6 to -10.3 and single-stage Nd-model ages of 1.7 - 1.9 Ga are indicative of an origin from a chemically evolved crustal source of on average late Palaeoproterozoic formation age. There is no evidence for significant sedimentary infill from primitive "ophiolitic" sources. Metasediments of the Middle Cambrian Molar Formation (Bowers Terrane) are compositionally strongly heterogeneous. Their major and trace element data and Sm-Nd isotope data (epsilonNd, t=500 Ma values of -14.3 to -1.2 and single-stage Nd-model ages of 1.7 - 2.1 Ga) can be explained by mixing of sedimentary input from an evolved crustal source of at least early Palaeoproterozoic formation age and from a primitive basaltic source. The chemical heterogeneity of metasediments from the Wilson Terrane is largely inherited from compositional variations of their precursor rocks as indicated by the Ni vs TiO2 diagram. Single-stage Nd-model ages of 1.6 -2.2 Ga for samples from more western inboard areas of the Wilson Terrane (epsilonNd, t=510 Ma -7.0 to -14.3) indicate a relatively high proportion of material derived from a crustal source with on average early Palaeoproterozoic formation age. Metasedimentary series in an eastern, more outboard position (epsilonNd, t=510 Ma -5.4 to -10.0; single-stage Nd model ages 1.4 - 1.9) on the contrary document stronger influence of a more primitive source with younger formation ages. The chemical and isotopic characteristics of metasediments from the Bowers and Wilson terranes can be explained by variable contributions from two contrasting sources: a cratonic continental crust similar to the Antarctic Shield exposed in Georg V Land and Terre Adélie some hundred kilometers west of the study area and a primitive basaltic source probably represented by the Cambrian island-arc of the Bowers Terrane. While the data for metasediments of the Robertson Bay Terrane are also compatible with an origin from an Antarctic-Shield-type source, there is no direct evidence from their geochemistry or isotope geochemistry for an island-arc component in these series.
Resumo:
A paleomagnetic study was made on the highly vesiculated basaltic tuff breccia (the basaltic mousse) drilled by Ocean Drilling Program Leg 126 from the Izu-Bonin backarc, Sumisu Rift, to estimate the mode of its emplacement. Thirty-four 10-cm**3 minicore samples were collected from almost all the horizons of the basaltic mousse. Stepwise thermal and alternating-field demagnetization experiments show that the natural remanent magnetizations of many samples are mainly composed of a single stable component. Although remanence inclinations are not expected to be disturbed by rotary drilling, the measured inclinations of remanence show a random directional distribution as a whole. The remanence inclinations, however, show directional consistency on a smaller scale. High-density sampling and measurements from a limited interval of drilled cores, and the measurement of small disks cut from a single minicore sample show that there is directional consistency over several centimeters. Strong and stable remanent magnetization, the existence of remanence direction consistency, and the fresh lithology of the samples suggest the thermal origin of remanence. Combining the paleomagnetic results with other geological, petrographical, and paleontological characters, the Hole 791B basaltic mousse can be interpreted as a subaqueous explosion breccia produced by deep-sea pyroclastic fountaining.
Resumo:
Gneissic granodiorite was recovered by drilling at the base of the Mazagan escarpment, 100 km west of the Casablanca, Morocco, at 4000 m water depth. Coarse, predeformative muscovite yielded dates of -515 Ma, fine-grained muscovite of -455 Ma, biotite -360 and 335 Ma, and feldspar -315 Ma. These dates are tentatively correlated with the microscopic results. We assume a minimum age of middle Cambrian for the granodiorite, an Ordovician deformation and mylonitization, and a Late Carboniferous overprint under upper greenschist facies conditions.
Resumo:
Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near-future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA-A receptor - a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2 , as a result of impaired learning, could have a major influence on population recruitment.