951 resultados para CONSTRUCCION IRREGULAR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a multiple-input multiple-output (MIMO) receiver algorithm that exploits channel hardening that occurs in large MIMO channels. Channel hardening refers to the phenomenon where the off-diagonal terms of the matrix become increasingly weaker compared to the diagonal terms as the size of the channel gain matrix increases. Specifically, we propose a message passing detection (MPD) algorithm which works with the real-valued matched filtered received vector (whose signal term becomes, where is the transmitted vector), and uses a Gaussian approximation on the off-diagonal terms of the matrix. We also propose a simple estimation scheme which directly obtains an estimate of (instead of an estimate of), which is used as an effective channel estimate in the MPD algorithm. We refer to this receiver as the channel hardening-exploiting message passing (CHEMP) receiver. The proposed CHEMP receiver achieves very good performance in large-scaleMIMO systems (e.g., in systems with 16 to 128 uplink users and 128 base station antennas). For the considered large MIMO settings, the complexity of the proposed MPD algorithm is almost the same as or less than that of the minimum mean square error (MMSE) detection. This is because the MPD algorithm does not need a matrix inversion. It also achieves a significantly better performance compared to MMSE and other message passing detection algorithms using MMSE estimate of. Further, we design optimized irregular low density parity check (LDPC) codes specific to the considered large MIMO channel and the CHEMP receiver through EXIT chart matching. The LDPC codes thus obtained achieve improved coded bit error rate performance compared to off-the-shelf irregular LDPC codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper explores the synthesis of oxide-free nanoparticles of Ag and Cu through laser ablation of pure targets under aqueous medium and tuning the quality and size through addition of Polyvinylpyrrolidone (PVP) in the medium. The size distribution of nanoparticles reduces from 37 +/- 30 nm and 13 +/- 5 nm to 32 +/- 12 nm and 4 +/- 1 nm for Ag and Cu with changes in PVP concentration from 0.00 to 0.02 M, respectively. Irregular shaped particles of Ag with Ag2O phase and a Cu-Cu2O core-shell particles form without the addition of PVP, while oxide layer is absent with 0.02 M of PVP. The recent understanding of the mechanism of particle formation during laser ablation under liquid medium allows us to rationalize our observation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study involves synthesis of a series of Tb3+ doped ZrO2 nanophosphors by solution combustion method using oxalyl dihydrazide as fuel. The as-formed ZrO2:Tb3+ nanophosphors having different concentrations of Tb3+ (1-11 mol%) were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-Visible spectroscopic techniques and the materials were subjected to photoluminescence and photocatalytic dye decolorization studies. The PXRD analysis indicates the formation of tetragonal symmetry up to 5 mol% concentration of Tb3+. Further increase in Tb3+ concentration has lead to cubic phase formation and the same was confirmed by Rietveld refinement analysis. SEM images revealed that material was highly porous in nature comprising of large voids and cracks with irregular morphology. TEM and SAED images clearly confirm the formation of high quality tetragonal nanocrystals. The emissive properties of nanophosphors were found to be dependent on Tb3+ dopant concentration. The green emission of the material was turned to white emission with the increase of Tb3+ ion concentration. The photocatalytic activities of these nanophosphors were probed for the decolorization of Congo red under UV and Sunlight irradiation. All the photocatalysts showed enhanced activity under UV light compared to Sunlight. The photocatalyst with 7 mol% Tb3+ showed enhanced activity attributed to effective separation of charge carriers due to phase transformation from tetragonal to cubic. The influence of crystallite size and PL on charge carrier trapping-recombination dynamics was investigated. The study successfully demonstrates synthesis of tetragonal and cubic ZrO2:Tb3+ green nanophosphors with superior photoluminescence and photocatalytic activities. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T-2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We first discuss how the flux transport dynamo with reasonably high diffusion can explain both the regular and the irregular features of the solar cycle quite well. Then, we critically examine the inadequacies of the model and the challenge posed by some recent observational data about meridional circulation, arriving at a conclusion that this model can still work within the bounds of observational data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles of different shapes can induce peculiar morphologies in binary polymer blends depending on their position. It is envisaged that the increased yield stress of the filled phase slows down the relaxation resulting in arresting the peculiar morphologies which otherwise is thermodynamically unfavourable due to the increased interfacial area. This essentially means that the highly irregular structures can be preserved even without altering the interfacial tension between the phases! On the other hand, in the case of interfacially adsorbed particles, the resulting solid-like interface can also preserve the irregular structures. These phenomenal transitions in filled blends are very different from the classical copolymer compatibilized polymer blends. Moreover, these irregular structures can further pave way in designing conducting polymer blends involving conducting nanoparticles and revisiting our understanding of the concept of double percolation!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanoindentation response of the (001) face of sodium saccharin dihydrate is examined. The structure can be demarcated into regular and irregular regions or domains. The regular domains have solid-like and the irregular ones have liquid-like characteristics. Therefore, these domains impart a microstructure to the crystal. The indent face (001) is prominently developed in this crystal and unambiguously presents the regular and irregular regions to nanoindention. Average values of elastic modulus and hardness show a distinct bimodal mechanical response. Such a response has been observed in the case of intergrown polymorphs of aspirin and felodipine. We examine two possible reasons as to why the responses could be for bimodal in this crystal. The first possibility could be that the two domains correspond to regions of the original dihydrate and a lower hydrate that is obtained by the loss of some water. The second possibility could be that these responses correspond to regular and irregular regions in the structure. Nanoindentation is a very useful technique in the characterization of molecular solids, as a complementary technique to X-ray crystallography, because it samples different length scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional magnetic recording (2-D TDMR) is an emerging technology that aims to achieve areal densities as high as 10 Tb/in(2) using sophisticated 2-D signal-processing algorithms. High areal densities are achieved by reducing the size of a bit to the order of the size of magnetic grains, resulting in severe 2-D intersymbol interference (ISI). Jitter noise due to irregular grain positions on the magnetic medium is more pronounced at these areal densities. Therefore, a viable read-channel architecture for TDMR requires 2-D signal-detection algorithms that can mitigate 2-D ISI and combat noise comprising jitter and electronic components. Partial response maximum likelihood (PRML) detection scheme allows controlled ISI as seen by the detector. With the controlled and reduced span of 2-D ISI, the PRML scheme overcomes practical difficulties such as Nyquist rate signaling required for full response 2-D equalization. As in the case of 1-D magnetic recording, jitter noise can be handled using a data-dependent noise-prediction (DDNP) filter bank within a 2-D signal-detection engine. The contributions of this paper are threefold: 1) we empirically study the jitter noise characteristics in TDMR as a function of grain density using a Voronoi-based granular media model; 2) we develop a 2-D DDNP algorithm to handle the media noise seen in TDMR; and 3) we also develop techniques to design 2-D separable and nonseparable targets for generalized partial response equalization for TDMR. This can be used along with a 2-D signal-detection algorithm. The DDNP algorithm is observed to give a 2.5 dB gain in SNR over uncoded data compared with the noise predictive maximum likelihood detection for the same choice of channel model parameters to achieve a channel bit density of 1.3 Tb/in(2) with media grain center-to-center distance of 10 nm. The DDNP algorithm is observed to give similar to 10% gain in areal density near 5 grains/bit. The proposed signal-processing framework can broadly scale to various TDMR realizations and areal density points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion behaviour of AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations was investigated. The corrosion rate of the unreinforced alloy was the lowest. The composite reinforced with Saffil short fibre alone exhibited slightly lower corrosion rate than the hybrid composites containing both Saffil short fibres and SiC particles. However, there was no specific trend observed in the corrosion rate of the hybrid composites with respect to the SiC particle content. The degradation of corrosion resistance of the composites was mainly attributed to the irregular and loose surface films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tb0.3Dy0.7Fe1.95 alloy was directionally solidified by using a modified Bridgman technique at a wide range of growth rates of 5 to 100 cm/h. The directionally grown samples exhibited plane front solidification morphology up to a growth rate of 90 cm/h. Typical island banding feature was observed closer to the chilled end, which eventually gave rise to irregular peritectic coupled growth (PCG). The PCG gained prominence with an increase in the growth rate. The texture study revealed formation of strong aOE (c) 311 > texture in a lower growth rate regime, aOE (c) 110 > and ``rotated aOE (c) 110 > aEuroe in an intermediate growth regime, and aOE (c) 112 > in a higher growth rate regime. In-depth analysis of the atomic configuration of a solid-liquid interface revealed that the growth texture is influenced by the kinetics of atomic attachment to the solid-liquid interface, which is intimately related to a planar packing fraction and an atomic stacking sequence of the interfacial plane. The mechanism proposed in this article is novel and will be useful in addressing the orientation selection mechanism of topologically closed packed intermetallic systems. The samples grown at a higher growth rate exhibit larger magnetostriction (lambda) and d lambda/dH owing to the absence of pro-peritectic (Tb,Dy)Fe-3 and formation of aOE (c) 112 > texture, which lies closer to the easy magnetization direction (EMD).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-arc oxidation (MAO) coatings were prepared on AZ31B magnesium alloy using alkaline silicate electrolyte at different current densities (0.026, 0.046 and 0.067 A/cm(2)). Field Emission Scanning Electron Microscopy (FESEM) analysis of the coating revealed an irregular porous structure with cracked morphology. Compositional analysis carried out for MAO coating showed the presence of almost an equal amount of Mg and 0 (34 wt.%) apart from other elements such as F, Si and AI. The cross-sectional FESEM images clearly portrayed that the MAO coating was dense along with the presence of very few fine pores. The surface roughness (R-a) of the coatings increased with an increase in the current density. Potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) studies were carried out for both the bare and MAO coated AZ31B Mg alloy in 3.5% NaCl solution. The corrosion potential (E-corr) and corrosion current density (i(corr)) values obtained for the bare substrate were -1.49 V and 46 mu A/cm(2), respectively. The coating prepared at 0.046 A/cm(2) exhibited the lowest i(corr) value of 7.79 x 10(-10) A/cm(2) and highest polarization resistance (41.6 M Omega cm(2)) attesting to the better corrosion resistance of the coating compared to other samples. EIS results also indicated almost similar corrosion behavior for the MAO coatings. Mott-Schottky analysis showed n-type and p-type semiconductor behavior for the oxide layer present on the bare magnesium alloy and MAO coatings respectively. (C) 2016 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to apply visualization methods to the experimental study of cornstarch dust-air mixture combustion in a closed vessel volume under microgravity conditions. A dispersion system with a small scale of turbulence was used in the experiments. A gas igniter initiated combustion of the dust-air mixture in the central or top part of the vessel. Flame propagation through the quiescent mixture was recorded by a high-speed video camera. Experiments showed a very irregular flame front and irregular distribution of the regions with local reactions of re-burning behind the flame front. at a later stage of combustion. Heat transfer from the hot combustion products to the walls is shown to have an important role in the combustion development. The maximum pressure and maximum rate of pressure rise were higher for flame propagation from the vessel center than for flame developed from the top pan of the vessel. The reason for smaller increase of the rate of pressure rise, for the flame developed from the top of the vessel. in comparison with that developed from the vessel center, was much faster increase of the contact surface of the combustion gases with the vessel walls. It was found that in dust flames only small part of hear was released at the flame front, the remaining part being released far behind it.