972 resultados para CHO cell line


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural killer (NK) cells show enhanced functional competence when they express inhibitory receptors specific for inherited major histocompatibility complex class I (MHC-I) molecules. Current models imply that NK cell education requires an interaction of inhibitory receptors with MHC-I expressed on other cells. However, the inhibitory Ly49A receptor can also bind MHC-I ligand on the NK cell itself (in cis). Here we describe a Ly49A variant, which can engage MHC-I expressed on other cells but not in cis. Even though this variant inhibited NK cell effector function, it failed to educate NK cells. The association with MHC-I in cis sequestered wild-type Ly49A, and this was found to relieve NK cells from a suppressive effect of unengaged Ly49A. These data explain how inhibitory MHC-I receptors can facilitate NK cell activation. They dissociate classical inhibitory from educating functions of Ly49A and suggest that cis interaction of Ly49A is necessary for NK cell education.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Retinoblastoma is the most common pediatric intraocular neoplasm. While retinoblastoma development requires the inactivation of both alleles of the retinoblastoma tumor suppressor gene (RB1) in the developing retina, additional genomic changes are involved in tumor progression, which progressively lead to resistance of tumor cells to death. Therapeutics acting at very downstream levels of death signaling pathways should therefore be interesting in killing retinoblastoma cells. The BH3-only proteins promote apoptosis by modulating the interaction between the pro- and antiapoptotic members of the BCL2 protein family, and this effect can be recapitulated by the BH3 domains. This report analyzes the effect of various BH3 peptides, corresponding to different BH3-only proteins, on two retinoblastoma cell lines, Y79 and WERI-Rb, as well as on the photoreceptor cell line 661W. The BH3 peptide BIRO1, derived from the BCL2L11 death domain, was very effective in promoting Y79 and WERI-Rb cell death without affecting the 661W photoreceptor cells. This cell death was efficient even in absence of BAX and was shown to be caspase independent. While ROS production or AIF release was not detected from mitochondria of treated cells, BIRO1 initiated mitochondria fragmentation in a short period of time following treatment. IMPLICATIONS: The BIRO1 peptide is highly effective at killing retinoblastoma cells and has potential as a peptidomimetic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fifteen human melanoma cells lines were tested by an antibody-binding radioimmunoassay using a monoclonal antibody (A12) directed against the common acute lymphoblastic leukemia antigen (CALLA). Cells from six melanoma lines were found to react with this antibody. The level of antigen and the percentage of positive cells in these six melanoma lines showed wide variation, as demonstrated by analysis in the fluorescence-activated cell sorter (FACS). Immunoprecipitation of solubilized 125I-labeled membrane proteins from CALLA positive melanoma cells with A12 monoclonal antibody revealed a major polypeptide chain with an apparent m.w. of 100,000 daltons, characteristic for CALLA as determined on SDS-polyacrylamide gel electrophoresis. The expression of CALLA on MP-6 melanoma cells was modulated when the cells were cultured in the presence of A12 antibody. Reexpression of CALLA on these cells occurred within 5 days after transfer of the modulated cells into medium devoid of monoclonal antibody.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The criteria for choosing relevant cell lines among a vast panel of available intestinal-derived lines exhibiting a wide range of functional properties are still ill-defined. The objective of this study was, therefore, to establish objective criteria for choosing relevant cell lines to assess their appropriateness as tumor models as well as for drug absorption studies. RESULTS: We made use of publicly available expression signatures and cell based functional assays to delineate differences between various intestinal colon carcinoma cell lines and normal intestinal epithelium. We have compared a panel of intestinal cell lines with patient-derived normal and tumor epithelium and classified them according to traits relating to oncogenic pathway activity, epithelial-mesenchymal transition (EMT) and stemness, migratory properties, proliferative activity, transporter expression profiles and chemosensitivity. For example, SW480 represent an EMT-high, migratory phenotype and scored highest in terms of signatures associated to worse overall survival and higher risk of recurrence based on patient derived databases. On the other hand, differentiated HT29 and T84 cells showed gene expression patterns closest to tumor bulk derived cells. Regarding drug absorption, we confirmed that differentiated Caco-2 cells are the model of choice for active uptake studies in the small intestine. Regarding chemosensitivity we were unable to confirm a recently proposed association of chemo-resistance with EMT traits. However, a novel signature was identified through mining of NCI60 GI50 values that allowed to rank the panel of intestinal cell lines according to their drug responsiveness to commonly used chemotherapeutics. CONCLUSIONS: This study presents a straightforward strategy to exploit publicly available gene expression data to guide the choice of cell-based models. While this approach does not overcome the major limitations of such models, introducing a rank order of selected features may allow selecting model cell lines that are more adapted and pertinent to the addressed biological question.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Visceral obesity and elevated plasma free fatty acids are predisposing factors for type 2 diabetes. Chronic exposure to these lipids is detrimental for pancreatic beta-cells, resulting in reduced insulin content, defective insulin secretion, and apoptosis. We investigated the involvement in this phenomenon of microRNAs (miRNAs), a class of noncoding RNAs regulating gene expression by sequence-specific inhibition of mRNA translation. RESEARCH DESIGN AND METHODS: We analyzed miRNA expression in insulin-secreting cell lines or pancreatic islets exposed to palmitate for 3 days and in islets from diabetic db/db mice. We studied the signaling pathways triggering the changes in miRNA expression and determined the impact of the miRNAs affected by palmitate on insulin secretion and apoptosis. RESULTS: Prolonged exposure of the beta-cell line MIN6B1 and pancreatic islets to palmitate causes a time- and dose-dependent increase of miR34a and miR146. Elevated levels of these miRNAs are also observed in islets of diabetic db/db mice. miR34a rise is linked to activation of p53 and results in sensitization to apoptosis and impaired nutrient-induced secretion. The latter effect is associated with inhibition of the expression of vesicle-associated membrane protein 2, a key player in beta-cell exocytosis. Higher miR146 levels do not affect the capacity to release insulin but contribute to increased apoptosis. Treatment with oligonucleotides that block miR34a or miR146 activity partially protects palmitate-treated cells from apoptosis but is insufficient to restore normal secretion. CONCLUSIONS: Our findings suggest that at least part of the detrimental effects of palmitate on beta-cells is caused by alterations in the level of specific miRNAs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, ß-actin and ¿-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which prevents lymphocyte polarization. Altogether, these data indicate that moesin interacts with ICAM-3 and CD44 adhesion molecules in uropods of polarized T cells; these data also suggest that these interactions participate in the formation of links between membrane receptors and the cytoskeleton, thereby regulating morphological changes during cell locomotion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RelA (NF-kappaB) is a transcription factor inducible by distinct stimuli in many different cell types. To find new cell type specific cofactors of NF-kappaB dependent transcription, we isolated RelA transcription activation domain binding proteins from the nuclear extracts of three different cell types. Analysis by electrophoresis and liquid chromatography tandem mass spectrometry identified several novel putative molecular partners. Some were strongly enriched in the complex formed from the nuclear extracts of specific cell types.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Murine cytolytic T cell lines have been analyzed for the expression of two surface glycoproteins called T145 and T130. T145, known to be expressed by activated cytolytic T cells, is also expressed by such lines, but T130, which has been described by a universal T cell marker, is not. Our results suggest a structural relationship between T145 and T130. Vicia villosa lectin, which binds selectively to T145 of activated T cells and which is cytotoxic for cytolytic T cell lines, has been used to select lectin-resistant mutants from these lines. Five independent lectin-resistant mutants have been obtained. All of them are cytolytically active, bind up to 100-fold less lectin than the parental lines, but still express T145 or a closely related glycoprotein.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The modulation of HLA-DR and HLA-A, -B, and -C by human recombinant immune interferon (IFN-gamma) was studied on 10 malignant glioma cell lines established in our laboratory, on 8 clones or subclones derived from these lines, and on a fetal astrocyte cell line. Comparative studies were performed with recombinant leukocyte interferon (IFN-alpha). The results not only confirmed the selective activity of IFN-gamma on the modulation of HLA-DR expression, as opposed to that of IFN-alpha, but also demonstrated a marked heterogeneity in the response of glioma cell lines and their clones to the two types of IFN tested. For example, all 3 clones of an inducible cell line could be modulated to express HLA-DR, whereas only 2 of 5 clones derived from a noninducible line were modulated. This heterogeneity did not seem to be due to the absence of the receptor for IFN-gamma on the surface of these cells, since almost all of the cell lines or clones tested (17 of 19) responded to IFN-gamma by the induction or enhancement of the expression for either HLA-DR or HLA-A, -B, and -C (or both). The heterogeneity of induction was also demonstrated between clones derived from a glioma line that did not express HLA-DR after IFN-gamma treatment. The production of HLA-DR by one of the clones was abundant enough to be confirmed by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma (KS). HHV-8 encodes an antiapoptotic viral Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (vFLIP/K13). The antiapoptotic activity of vFLIP/K13 has been attributed to an inhibition of caspase 8 activation and more recently to its capability to induce the expression of antiapoptotic proteins via activation of NF-kappaB. Our study provides the first proteome-wide analysis of the effect of vFLIP/K13 on cellular-protein expression. Using comparative proteome analysis, we identified manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant and an important antiapoptotic enzyme, as the protein most strongly upregulated by vFLIP/K13 in endothelial cells. MnSOD expression was also upregulated in endothelial cells upon infection with HHV-8. Microarray analysis confirmed that MnSOD is also upregulated at the RNA level, though the differential expression at the RNA level was much lower (5.6-fold) than at the protein level (25.1-fold). The induction of MnSOD expression was dependent on vFLIP/K13-mediated activation of NF-kappaB, occurred in a cell-intrinsic manner, and was correlated with decreased intracellular superoxide accumulation and increased resistance of endothelial cells to superoxide-induced death. The upregulation of MnSOD expression by vFLIP/K13 may support the survival of HHV-8-infected cells in the inflammatory microenvironment in KS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hypoxia is an essential component of tumor microenvironment. In this study, we investigated the influence of hypoxia (1% PO(2)) on CTL-mediated tumor cell lysis. We demonstrate that exposure of target tumor cells to hypoxia has an inhibitory effect on the CTL clone (Heu171)-induced autologous target cell lysis. Such inhibition correlates with hypoxia-inducible factor-1alpha (HIF-1alpha) induction but is not associated with an alteration of CTL reactivity as revealed by granzyme B polarization or morphological change. Western blot analysis indicates that although hypoxia had no effect on p53 accumulation, it induced the phosphorylation of STAT3 in tumor cells by a mechanism at least in part involving vascular endothelial growth factor secretion. We additionally show that a simultaneous nuclear translocation of HIF-1alpha and phospho-STAT3 was observed. Interestingly, gene silencing of STAT3 by small interfering RNA resulted in HIF-1alpha inhibition and a significant restoration of target cell susceptibility to CTL-induced killing under hypoxic conditions by a mechanism involving at least in part down-regulation of AKT phosphorylation. Moreover, knockdown of HIF-1alpha resulted in the restoration of target cell lysis under hypoxic conditions. This was further supported by DNA microarray analysis where STAT3 inhibition resulted in a partly reversal of the hypoxia-induced gene expression profile. The present study demonstrates that the concomitant hypoxic induction of phospho-STAT3 and HIF-1alpha are functionally linked to the alteration of non-small cell lung carcinoma target susceptibility to CTL-mediated killing. Considering the eminent functions of STAT3 and HIF-1alpha in the tumor microenvironment, their targeting may represent novel strategies for immunotherapeutic intervention.