967 resultados para CASPASE-3


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disuse osteoporosis is a condition in which reduced mechanical loading (e.g. bed-rest, immobilization, or paralysis) results in unbalanced bone turnover. The American black bear is a unique, naturally occurring model for the prevention of disuse osteoporosis. Bears remain mostly inactive for up to half a year of hibernation annually, yet they do not lose bone mechanical strength or structural properties throughout hibernation. The long-term goal of this study is to determine the biological mechanism through which bears maintain bone during hibernation. This mechanism could pinpoint new signaling pathway targets for the development of drugs for osteoporosis prevention. In this study, bone specific alkaline phosphatase (BSALP), a marker of osteoblast activity, and tartrate resistant acid phosphatase (TRACP), a marker of osteoclast number, were quantified in the serum of hibernating and active black bears. BSALP and TRACP decreased during hibernation, suggesting a balanced reduction in bone turnover. This decrease in BSALP and TRACP were correlated positively to serum adiponectin and inversely to serum neuropeptide Y, suggesting a possible role of these hormones in suppressing bone turnover during hibernation. Osteocalcin (OCN) and undercarboxylated OCN increased dramatically in the serum of hibernating bears. These increases were inversely correlated with adiponectin, glucose, and serotonin, suggesting that OCN may have a unique role in energy homeostasis during hibernation. Finally, MC3T3-E1 osteoblasts were cultured in the serum from active and hibernating bears, and seasonal cell responses were quantified. Cells cultured in serum from hibernating bears had a reduced caspase-3/7 response, and more living cells, after apoptotic threat. The caspase-3/7 response was positively correlated to serum adiponectin and to gene expression of OCN and Runx2, suggesting that reduced caspase-3/7 activity may be related to the reduced differentiation potential of osteoblasts in hibernation serum, and that adiponectin is a potential effector hormone. In summary, the activities of osteoblasts and osteoclasts are reduced during hibernation in bears. This reduced turnover is due, in part, to hormonal control. Further study of potential effectors adiponectin and neuropeptide Y may provide insight into the biological mechanism through which bears maintain bone throughout hibernation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular responses to hypoxia restore oxygen homeostasis and promote cell survival, and are mainly regulated through the activation of the hypoxia-inducible transcription factor (HIF)-1 and its target genes. In this study we questioned whether surgically depleting the liver s arterial blood supply, by clamping the hepatic artery (HA), would be sufficient to mount a hypoxia-driven molecular response, the up-regulation of hepatoprotective genes and thereby protect the liver from subsequent damaging insults.;;The HA of normal male Balb/c mice was clamped with a micro vascular clip for 2 hours. The liver s saturated oxygen concentration (SO2) was measured using an O2C surface probe (LEA-Medizintechnik) and interstitial fluid was collected with microdialysis membranes to monitor tissue damage. Mice without clamping served as sham operated controls. Interstitial fluid was assessed for lactate pyruvate (L/P) and glycerol content and the mRNA of hepatoprotective genes was analyzed by real time PCR. Subsequently, mice received either a tail vein injection of anti-Fas antibody (Jo2, 0.2 mg/kg) or the liver was made ischemic (60min) followed by 6 hours reperfusion. Caspase 3-activity and cleaved lamin A were used to assess apoptosis. In separate groups, animal were monitored for survival.;;After 30min of clamping the HA the SO2 of the liver decreased and remained at a reduced level for up to 2 hours, without an increase in L/P ratio or glycerol release. We demonstrate the activation of a hypoxia-inducible signaling pathway by the stabilization of HIF-1 protein (Western blot) and by an increase of its target gene, Epo, mRNA. There was an up-regulation of the hepatoprotective genes IL-6, IGFBP-1, HO-1 and A20 mRNA. When subsequently injected with Jo2, animals preconditioned with HA clamping, had a significantly decreased caspase-3 activity (avg21044 vs. avg3637; p=0.001, T-test) and there were fewer positive cells for cleaved Lamin A. The survival probability (10.5 hours, n=12) of mice with HA clamping was significantly higher (3.2 hours, n=13; p=0.014, Logrank test). Likewise, survival after 60 minutes of partial hepatic ischemia and 6 hours of reperfusion was reduced from 86% in mice with pretreatment by HA clamping to 56% in sham treated controls.;;This study demonstrates that a localized hypoxic stress can be achieved by surgically removing the livers arterial blood supply. Furthermore it can stimulate a hepatoprotective response that protects the liver against Fas-mediated apoptosis and ischemia-reperfusion injury. Our findings offer an innovative approach to induce hepatoprotective genes to defend the liver against subsequent insults.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression at transcriptional or post-transcriptional level. Let-7 family is among the first identified human miRNAs and regulates multiple cellular processes including glucose metabolism in multiple organs. It has been reported that overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance through repressing insulin signaling pathway in both muscle and liver. However, the role and mechanism underlying let-7 function in pancreatic beta-cells have yet to be elucidated. Let-7 family contains nine members, which poses a significant challenge in complete deletion of this miRNA family. To study the function of let-7 and to overcome the functional redundancies of various let-7 members in pancreatic beta-cells, the highly expressed let-7a and let-7b were blocked simultaneously using short tandem target mimic (STTM) approach developed in our laboratory. Introducing STTM-let7 into beta-cells markedly increased the expression of Caspase 3, a direct target of let-7, confirming a sufficient functional knockdown of let-7a/b by STTM-let7. STTM-let7 enhanced apoptotic cell death induced by cytokine, indicating that let-7a/b is able to protect from apoptosis through attenuating Caspase 3 expression in pancreatic beta-cells. In contrast to the previous observation that let-7 silencing increases insulin signaling in muscle and liver, inhibition of let-7 with STTM-let7 significantly repressed glucose-stimulated insulin signaling in pancreatic beta-cells, leading to impaired insulin secretion and reduced beta-cell proliferation. Taken together, an appropriate level of let-7 is essential in maintaining beta-cell function and viability. Dysregulation of let-7 may contribute to the pathogenesis of type 2 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Adipokines and hepatocellular apoptosis participate in the pathogenesis of nonalcoholic steatohepatitis (NASH). In a randomized trial ursodeoxycholic acid (UDCA) with vitamin E (VitE) improved serum aminotransferases and hepatic histology. The present work evaluates the effect of this combination on adipokines and hepatocellular apoptosis. METHODS: Circulating levels of adiponectin, resistin, leptin, interleukin (IL)-6, IL-8, retinol binding protein-4, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha were measured by enzyme-linked immunoassays at the beginning and after 2 years of treatment with either UDCA+VitE, UDCA+placebo (P) or P+P. Apoptosis was assessed by immunohistochemistry for activated caspase-3 and circulating levels of apoptosis-associated cytokeratin 18 fragments (M30). RESULTS: Levels of adiponectin increased in patients treated with UDCA+VitE, whereas they decreased in the two other groups (P<0.04) and correlated with the improvement of liver steatosis (P<0.04). M30 levels worsened in the P/P group and improved in the other two groups. They correlated with hepatocellular apoptosis (P<0.02) and steatosis (P<0.02) as well as negatively with adiponectin levels (P<0.04). CONCLUSIONS: UDCA+VitE improves not only aminotransferase levels and liver histology of patients with NASH, but also decreases hepatocellular apoptosis and restores circulating levels of adiponectin. These results suggest that the UDCA+VitE combination has metabolic effects in addition to its beneficial cytoprotective properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Immune cells in the milk are most important in combating pathogens that invade the mammary gland. This study investigated the immune competence and viability of somatic milk cells that are already resident in milk and udders free of infection. Cells were studied in freshly removed milk to simulate conditions in the udder. Effects of incubation, cell preparation, and immunological stimulation with 0.5 mug/ml lipopolysaccharide (LPS) from Escherichia coli were analysed. Viability and differential counts of milk cells between high and low somatic cell count (SCC) quarters, and cisternal and alveolar milk with and without LPS stimulation were compared. Incubation and preparation of cells caused a cell loss which further increased with time independently of SCC and milk fraction. The viability of these cells was stable until 3 h post incubation and decreased until 6 h. Cell populations differed between both investigations, but did not change during the course of the experiment. mRNA expression of immune and apoptosis factors of the cells, measured by qPCR, did not change substantially: mRNA expression of caspase 3, Toll like receptor 4, and GM-CSF did not change, whereas the expression of the death receptor Fas/APO-1 (CD95), lactoferrin and lysozyme was decreased at 6 h. Cyclooxygenase-2 and TNF-alpha mRNA expression were decreased after 6 h of LPS treatment. In comparison with other studies in vivo or in vitro (in cell culture), in this study where cells are studied ex vivo (removed from the udder but kept in their natural environment, the milk) resident milk cells seem to be more vulnerable, less viable, less able to respond to stimulation, and thus less immune competent compared with cells that have freshly migrated from blood into milk after pathogen stimulation. The cell viability and differential cell count differed between high- and low-SCC milk and between cisternal and alveolar milk depending on the individual cow. In conclusion, the results support the view that for a most effective defence against invading pathogens the mammary gland is reliant on the recruitment of fresh immune cells from the blood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895–1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. RESULTS: Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. CONCLUSIONS: Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies from our lab have shown that decreasing myocardial G protein-coupled receptor kinase 2 (GRK2) activity and expression can prevent heart failure progression after myocardial infarction. Since GRK2 appears to also act as a pro-death kinase in myocytes, we investigated the effect of cardiomyocyte-specific GRK2 ablation on the acute response to cardiac ischemia/reperfusion (I/R) injury. To do this we utilized two independent lines of GRK2 knockout (KO) mice where the GRK2 gene was deleted in only cardiomyocytes either constitutively at birth or in an inducible manner that occurred in adult mice prior to I/R. These GRK2 KO mice and appropriate control mice were subjected to a sham procedure or 30 min of myocardial ischemia via coronary artery ligation followed by 24 hrs reperfusion. Echocardiography and hemodynamic measurements showed significantly improved post-I/R cardiac function in both GRK2 KO lines, which correlated with smaller infarct sizes in GRK2 KO mice compared to controls. Moreover, there was significantly less TUNEL positive myocytes, less caspase-3, and -9 but not caspase-8 activities in GRK2 KO mice compared to control mice after I/R injury. Of note, we found that lowering cardiac GRK2 expression was associated with significantly lower cytosolic cytochrome C levels in both lines of GRK2 KO mice after I/R compared to corresponding control animals. Mechanistically, the anti-apoptotic effects of lowering GRK2 expression were accompanied by increased levels of Bcl-2, Bcl-xl, and increased activation of Akt after I/R injury. These findings were reproduced in vitro in cultured cardiomyocytes and GRK2 mRNA silencing. Therefore, lowering GRK2 expression in cardiomyocytes limits I/R-induced injury and improves post-ischemia recovery by decreasing myocyte apoptosis at least partially via Akt/Bcl-2 mediated mitochondrial protection and implicates mitochondrial-dependent actions, solidifying GRK2 as a pro-death kinase in the heart.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Resistance to chemotherapy in lung adenocarcinoma remains a major obstacle. We examined the potential role of Octamer-binding transcription factor-4B (OCT4B) in enhancing sensitivity of lung adenocarcinoma cells to cisplatin. MATERIALS AND METHODS RNAi interference was used to examine the role of OCT4B in cisplatin-treated A549 cells. Cells were transfected with OCT4B siRNA prior to a 48-h cisplatin treatment. Propidium iodide (PI) and caspase-3 staining were used to determine cell viability and apoptosis. Cell-cycle analysis was performed to evaluate alterations in phase distribution. RESULTS OCT4B suppression in cells increased the number of non-viable, PI(+), and apoptotic, caspase-3(+) cells in the presence and absence of cisplatin treatment. Importantly, cisplatin treatment of OCT4B-suppressed cells resulted in a marked transition of cells from G0/G1 to G2/M phase. CONCLUSION Silencing of OCT4B confers sensitivity to cisplatin treatment in A549 cells via cell-cycle regulation, increased proliferation and enhancement of cisplatin-induced apoptosis. OCT4B clearly protects A549 cells from apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Einleitung: Bandscheiben wirken als Schockabsorbierer in der Wirbelsäule und auf diese wirken meistens komplexe Kräfte, zusammengesetzt aus Kompression, Torsion und Flexion. Die biomechanishe Umgebung einer Bandscheibe ist denn auch geprägt von komplexen Belastungen. Die Forschung über die in vitro Bandscheibenbiologie hat sich bisher um die axiale Kompression konzentriert, wobei die Bedeutung von Torsion und insbesondere dem Zusammenspiel von Kompression und Torsion (="Twisting") praktisch noch nie untersucht wurde an lebenden Organkultur-Explantaten. Wir präsentieren neue mechanobiologische Daten über die Überlebenswahrscheinlichkeit von Bandscheibenzellen kultiviert in einem neuartigen, kompakten Design eines bi-axialen Bioreaktors, um die Bedeutung von Kompression und Torsion zu verstehen. Material/Methode: Bovine Schwanzbandscheiben mit den Endplatten wurden isoliert wie bereits beschrieben [2] und mechanische Belastung wurde angewendet mit einem 2 DoF Bioreaktor für 14 Tage [3]. Die Bandscheiben wurden in verschiedene Belastungsgruppen eingeteilt: 1) Keine Belastung (NL), 2) zyklische Kompression (CC) [8h: axiale Kompression mit 0.6 ± 0.2 MPa, 0.2 Hz], 3) zyklische Torsion (CT) [8h: ± 2° torsion, 0.2 Hz, 0.2 MPa compression], 4) zyklische Kompression und Torsion (CCT) [8h: 0.6 ± 0.2 MPa, 0.2 Hz & ± 2° torsion, 0.2 Hz]. Das Bandscheibengewebe wurde mit LIVE/DEAD gefärbt und miteinem konfokalen Mikroskop visualisiert um die Überlebensrate zu bestimmen. Zell Apoptosis wurde quantifiziert mit einem Caspase 3/7 Kit normalisiert zum totalen Proteingehalt (Bradford). Relative Gen-Expression von wichtigen Genen für die Bandscheibe wurde bestimmt von anabolischen, katabolischen und inflammatorischen Genen mittels real-time RT-PCR. Die Morphologie der Bandscheibenzellen wurde mittels Histologie bestimmt. Ergebnisse: Die Resultate zeigten einen starken Abfall der Zellüberlebenswahrscheinlichkeit im Zentrum der Bandscheiben, dem Nulceus Pulposus (NP), i.e. 10%, in der Gruppe mit CCT. Hingegen die Überlebenswahrscheinlichkeit im Annulus fibrosus (AF) war stabilisiert bei über 60% im NP und im AF in allen anderen Gruppen (Fig 1). Apoptotische Aktivität war statistisch signifikant erhöht in der CC-Gruppe, aber nicht in der CCT-Gruppe, was die Vermutung nahe legt, dass der erhöhte Zellverlust im NP nicht mit Apoptose sondern mit Nekrose erklärt werden kann. Die Gen Expression der anabolischen Gene COL1, COL2 und Biglycan war signifikant erhöht im AF in der CCT Gruppe, ebenfalls waren Remodeling-Gene angeschaltet wie ADAMTS4 und MMP-13 in der CCT Gruppe (Fig. 2). Der Glykosaminoglykan (GAG) Gehalt war generell im AF erhöht in den Gruppen unter mechanischer Belastung, jedoch nicht statistisch signifikant. Schlussfolgerung: Zyklische Torsion kombiniert mit zyklischer Kompression waren in dieser Studie erfolgreich und nach unserem besten Wissen zum ersten Mal an Bandscheibenexplantaten in einer 14- tägigen Organkultur angewendet worden in einem dafür speziell konzipierten Bioreaktor. Die Resultezeigten überraschend einen negativen Effekt bei physiologischen Parametern, was die Belastung (0.6MPa ± 0.2MPa) und die Torsion (± 2°) angeht. Dieser negative Effekt des "Twistings" auf die Überlebenswahrscheinlichkeit der Zellen war jedoch nur regional im NP von Bedeutung, wohingegen im AF keine Effekte zu detektieren waren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.