951 resultados para CARA utility function
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Early mathematical learning: Number processing skills and executive function at 5 and 8 years of age
Resumo:
This research investigated differences and associations in performance in number processing and executive function for children attending primary school in a large Australian metropolitan city. In a cross-sectional study, performance of 25 children in the first full-time year of school, (Prep; mean age = 5.5 years) and 21 children in Year 3 (mean age = 8.5 years) completed three number processing tasks and three executive function tasks. Year 3 children consistently outperformed the Prep year children on measures of accuracy and reaction time, on the tasks of number comparison, calculation, shifting, and inhibition but not on number line estimation. The components of executive function (shifting, inhibition, and working memory) showed different patterns of correlation to performance on number processing tasks across the early years of school. Findings could be used to enhance teachers’ understanding about the role of the cognitive processes employed by children in numeracy learning, and so inform teachers’ classroom practices.
Resumo:
Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
Objective National guidelines for management of intermediate risk patients with suspected acute coronary syndrome, in whom AMI has been excluded, advocate provocative testing to final risk stratify these patients into low risk (negative testing) or high risk (positive testing suggestive of unstable angina). Adults less than 40 years have a low pretest probability of acute coronary syndrome. The utility of exercise stress testing in young adults with chest pain suspected of acute coronary syndrome who have National Heart Foundation intermediate risk features was evaluated Methods A retrospective analysis of exercise stress testing performed on patients less than 40 years was evaluated. Patients were enrolled on a chest pain pathway and had negative serial ECGs and cardiac biomarkers before exercise stress testing to rule-out acute coronary syndrome. Chart review was completed on patients with positive stress tests. Results The 3987 patients with suspected intermediate risk acute coronary syndrome underwent exercise stress testing. One thousand and twenty-seven (25.8%) were aged less than 40 years (age 33.3 ± 4.8 years). Four of these 1027 patients had a positive exercise stress test (0.4% incidence of positive exercise stress testing). Of those, three patients had subsequent non-invasive functional testing that yielded a negative result. One patient declined further investigations. Assuming this was a true positive exercise stress test, the incidence of true positive exercise stress testing would have been 0.097% (95% confidence interval: 0.079–0.115%) (one of 1027 patients). Conclusions Routine exercise stress testing has limited value in the risk stratification of adults less than 40 years with suspected intermediate risk of acute coronary syndrome
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.
Resumo:
Giant Cell Arteritis (GCA) is the most common vasculitis affecting the elderly. Archived formalin-fixed paraffin-embedded (FFPE) temporal artery biopsy (TAB) specimens potentially represent a valuable resource for large-scale genetic analysis of this disease. FFPE TAB samples were obtained from 12 patients with GCA. Extracted TAB DNA was assessed by real time PCR before restoration using the Illumina HD FFPE Restore Kit. Paired FFPE-blood samples were genotyped on the Illumina OmniExpress FFPE microarray. The FFPE samples that passed stringent quality control measures had a mean genotyping success of >97%. When compared with their matching peripheral blood DNA, the mean discordant heterozygote and homozygote single nucleotide polymorphisms calls were 0.0028 and 0.0003, respectively, which is within the accepted tolerance of reproducibility. This work demonstrates that it is possible to successfully obtain high-quality microarray-based genotypes FFPE TAB samples and that this data is similar to that obtained from peripheral blood.
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Resumo:
This paper proposes and explores the Deep Customer Insight Innovation Framework in order to develop an understanding as to how design can be integrated within existing innovation processes. The Deep Customer Insight Innovation Framework synthesises the work of Beckman and Barry (2007) as a theoretical foundation, with the framework explored within a case study of Australian Airport Corporation seeking to drive airport innovations in operations and retail performance. The integration of a deep customer insight approach develops customer-centric and highly integrated solutions as a function of concentrated problem exploration and design-led idea generation. Businesses’ facing complex innovation challenges or seeking to making sense of future opportunities will be able to integrate design into existing innovation processes, anchoring the new approach between existing market research and business development activities. This paper contributes a framework and novel understanding as to how design methods are integrated into existing innovation processes for operationalization within industry.
Resumo:
Selective introduction and removal of protecting groups is of great significance in organic synthesis.l The benzyl ether function is one of the most common protecting groups for alcohols. Selective oxidative removal of the 4-methoxybenzyl (MPM) ethers in the presence of benzyl ethers made the MPM moiety an alternative protecting group, and its utility in carbohydrate chemistry is well established. Several procedures have been developed for the cleavage of the 4-methoxybenzyl moiety, e.g. DDQ oxidation (eq 1),2e lectrochemical ~xidationh,~om ogeneous electron t r a n~f e rp,~ho toinduced single electron t r an~f e rb,o~ro n trichloride-dimethyl sulfide,6e tc. However, in all these methods isolation of the alcohol from the inevitable byproduct, 4-methoxybenzaldehyde [also dichlorodicyanohydroquinone (DDHQ) in the most commonly used method employing DDQI can be troublesome. Recently Wallace and Hedgetts7 discovered that acetic acid at 90 "C cleaves the aromatic MPM ethers into the corresponding phenols and 4-methoxybenzyl acetate (eq 21, whereas the aliphatic MPM ethers generated, instead of alcohols, the corresponding acetates (eq 3). Complimentary to this methodology, herein we report that sodium cyanoborohydride and boron trifluoride etherate reductively cleaves, cleanly and efficiently, the aliphatic MPM ethers to an easily separable mixture of the corresponding alcohols and 4-methylanisole
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Resumo:
We find in complementary experiments and event-driven simulations of sheared inelastic hard spheres that the velocity autocorrelation function psi(t) decays much faster than t(-3/2) obtained for a fluid of elastic spheres at equilibrium. Particle displacements are measured in experiments inside a gravity-driven flow sheared by a rough wall. The average packing fraction obtained in the experiments is 0.59, and the packing fraction in the simulations is varied between 0.5 and 0.59. The motion is observed to be diffusive over long times except in experiments where there is layering of particles parallel to boundaries, and diffusion is inhibited between layers. Regardless, a rapid decay of psi(t) is observed, indicating that this is a feature of the sheared dissipative fluid, and is independent of the details of the relative particle arrangements. An important implication of our study is that the non-analytic contribution to the shear stress may not be present in a sheared inelastic fluid, leading to a wider range of applicability of kinetic theory approaches to dense granular matter.