934 resultados para Branch and bound algorithms
Resumo:
A motivação para este trabalho vem da necessidade que o autor tem em poder registar as notas tocadas na guitarra durante o processo de improviso. Quando o músico está a improvisar na guitarra, muitas vezes não se recorda das notas tocadas no momento, este trabalho trata o desenvolvimento de uma aplicação para guitarristas, que permita registar as notas tocadas na guitarra eléctrica ou clássica. O sinal é adquirido a partir da guitarra e processado com requisitos de tempo real na captura do sinal. As notas produzidas pela guitarra eléctrica, ligada ao computador, são representadas no formato de tablatura e/ou partitura. Para este efeito a aplicação capta o sinal proveniente da guitarra eléctrica a partir da placa de som do computador e utiliza algoritmos de detecção de frequência e algoritmos de estimação de duração de cada sinal para construir o registo das notas tocadas. A aplicação é desenvolvida numa perspectiva multi-plataforma, podendo ser executada em diferentes sistemas operativos Windows e Linux, usando ferramentas e bibliotecas de domínio público. Os resultados obtidos mostram a possibilidade de afinar a guitarra com valores de erro na ordem de 2 Hz em relação às frequências de afinação standard. A escrita da tablatura apresenta resultados satisfatórios, mas que podem ser melhorados. Para tal será necessário melhorar a implementação de técnicas de processamento do sinal bem como a comunicação entre processos para resolver os problemas encontrados nos testes efectuados.
Resumo:
This paper presents a Multi-Agent Market simulator designed for developing new agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. This tool studies negotiations based on different market mechanisms and, time and behavior dependent strategies. The results of the negotiations between agents are analyzed by data mining algorithms in order to extract rules that give agents feedback to improve their strategies. The system also includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agent reactions.
Resumo:
This paper presents a Swarm based Cooperation Mechanism for scheduling optimization. We intend to conceptualize real manufacturing systems as interacting autonomous entities in order to support decision making in agile manufacturing environments. Agents coordinate their actions automatically without human supervision considering a common objective – global scheduling solution taking advantages from collective behavior of species through implicit and explicit cooperation. The performance of the cooperation mechanism will be evaluated consider implicit cooperation at first stage through ACS, PSO and ABC algorithms and explicit through cooperation mechanism application.
Resumo:
This paper presents a Multi-Agent Market simulator designed for analyzing agent market strategies based on a complete understanding of buyer and seller behaviors, preference models and pricing algorithms, considering user risk preferences and game theory for scenario analysis. The system includes agents that are capable of improving their performance with their own experience, by adapting to the market conditions, and capable of considering other agents reactions.
Resumo:
With the increasing importance of large commerce across the Internet it is becoming increasingly evident that in a few years the Iternet will host a large number of interacting software agents. a vast number of them will be economically motivated, and will negociate a variety of goods and services. It is therefore important to consider the economic incentives and behaviours of economic software agents, and to use all available means to anticipate their collective interactions. This papers addresses this concern by presenting a multi-agent market simulator designed for analysing agent market strategies based on a complete understanding of buyer and seller behaviours, preference models and pricing algorithms, consideting risk preferences. The system includes agents that are capable of increasing their performance with their own experience, by adapting to the market conditions. The results of the negotiations between agents are analysed by data minig algorithms in order to extract rules that give agents feedback to imprive their strategies.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Mestrado em Radioterapia
Resumo:
A instalação de sistemas de videovigilância, no interior ou exterior, em locais como aeroportos, centros comerciais, escritórios, edifícios estatais, bases militares ou casas privadas tem o intuito de auxiliar na tarefa de monitorização do local contra eventuais intrusos. Com estes sistemas é possível realizar a detecção e o seguimento das pessoas que se encontram no ambiente local, tornando a monitorização mais eficiente. Neste contexto, as imagens típicas (imagem natural e imagem infravermelha) são utilizadas para extrair informação dos objectos detectados e que irão ser seguidos. Contudo, as imagens convencionais são afectadas por condições ambientais adversas como o nível de luminosidade existente no local (luzes muito fortes ou escuridão total), a presença de chuva, de nevoeiro ou de fumo que dificultam a tarefa de monitorização das pessoas. Deste modo, tornou‐se necessário realizar estudos e apresentar soluções que aumentem a eficácia dos sistemas de videovigilância quando sujeitos a condições ambientais adversas, ou seja, em ambientes não controlados, sendo uma das soluções a utilização de imagens termográficas nos sistemas de videovigilância. Neste documento são apresentadas algumas das características das câmaras e imagens termográficas, assim como uma caracterização de cenários de vigilância. Em seguida, são apresentados resultados provenientes de um algoritmo que permite realizar a segmentação de pessoas utilizando imagens termográficas. O maior foco desta dissertação foi na análise dos modelos de descrição (Histograma de Cor, HOG, SIFT, SURF) para determinar o desempenho dos modelos em três casos: distinguir entre uma pessoa e um carro; distinguir entre duas pessoas distintas e determinar que é a mesma pessoa ao longo de uma sequência. De uma forma sucinta pretendeu‐se, com este estudo, contribuir para uma melhoria dos algoritmos de detecção e seguimento de objectos em sequências de vídeo de imagens termográficas. No final, através de uma análise dos resultados provenientes dos modelos de descrição, serão retiradas conclusões que servirão de indicação sobre qual o modelo que melhor permite discriminar entre objectos nas imagens termográficas.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e Computadores
Resumo:
This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais
Resumo:
In the present paper we focus on the performance of clustering algorithms using indices of paired agreement to measure the accordance between clusters and an a priori known structure. We specifically propose a method to correct all indices considered for agreement by chance - the adjusted indices are meant to provide a realistic measure of clustering performance. The proposed method enables the correction of virtually any index - overcoming previous limitations known in the literature - and provides very precise results. We use simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly relevant when poorly separated clusters are considered. Finally we compare the performance of EM and KMeans algorithms, within each of the simulated scenarios and generally conclude that EM generally yields best results.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática.
Resumo:
Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.