891 resultados para Boundary objects
Resumo:
The authors assessed rats' encoding of the appearance or egocentric position of objects within visual scenes containing 3 objects (Experiment 1) or I object (Experiment 2A). Experiment 2B assessed encoding of the shape and fill pattern of single objects, and encoding of configurations (object + position, shape + fill). All were assessed by testing rats' ability to discriminate changes from familiar scenes (constant-negative paradigm). Perirhinal cortex lesions impaired encoding of objects and their shape; postrhinal cortex lesions impaired encoding of egocentric position, but the effect may have been partly due to entorhinal involvement. Neither lesioned group was impaired in detecting configural change. In Experiment 1, both lesion groups were impaired in detecting small changes in relative position of the 3 objects, suggesting that more sensitive tests might reveal configural encoding deficits.
Resumo:
Investigation of the anatomical substructure of the medial temporal lobe has revealed a number of highly interconnected areas, which has led some to propose that the region operates as a unitary memory system. However, here we outline the results of a number of studies from our laboratories, which investigate the contributions of the rat's perirhinal cortex and postrhinal cortex to memory, concentrating particularly on their respective roles in memory for objects. By contrasting patterns of impairment and spared abilities on a number of related tasks, we suggest that perirhinal cortex and postrhinal cortex make distinctive contributions to learning and memory: for example, that postrhinal cortex is important in learning about within-scene position and context. We also provide evidence that despite the strong connectivity between these cortical regions and the hippocampus, the hippocampus, as evidenced by lesions of the fornix, has a distinct function of its own-combining information about objects, positions, and contexts.
Resumo:
Most haptic environments are based on single point interactions whereas in practice, object manipulation requires multiple contact points between the object, fingers, thumb and palm. The Friction Cone Algorithm was developed specifically to work well in a multi-finger haptic environment where object manipulation would occur. However, the Friction Cone Algorithm has two shortcomings when applied to polygon meshes: there is no means of transitioning polygon boundaries or feeling non-convex edges. In order to overcome these deficiencies, Face Directed Connection Graphs have been developed as well as a robust method for applying friction to non-convex edges. Both these extensions are described herein, as well as the implementation issues associated with them.
Resumo:
The interaction of a terahertz beam with a sample containing a material boundary across the profile of the terahertz beam produces characteristic spectroscopic detail. A full vectorial model is presented to quantify boundary definition for a series of wedged geometries. As a result of this work, using simple geometric forms, we wish to be able to extend these ideas to characterize boundaries in more irregular samples, impacting most application areas of pulsed terahertz radiation.
Resumo:
We present a novel topology of the radial basis function (RBF) neural network, referred to as the boundary value constraints (BVC)-RBF, which is able to automatically satisfy a set of BVC. Unlike most existing neural networks whereby the model is identified via learning from observational data only, the proposed BVC-RBF offers a generic framework by taking into account both the deterministic prior knowledge and the stochastic data in an intelligent manner. Like a conventional RBF, the proposed BVC-RBF has a linear-in-the-parameter structure, such that it is advantageous that many of the existing algorithms for linear-in-the-parameters models are directly applicable. The BVC satisfaction properties of the proposed BVC-RBF are discussed. Finally, numerical examples based on the combined D-optimality-based orthogonal least squares algorithm are utilized to illustrate the performance of the proposed BVC-RBF for completeness.
Resumo:
The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.
Resumo:
We study boundary value problems for a linear evolution equation with spatial derivatives of arbitrary order, on the domain 0 < x < L, 0 < t < T, with L and T positive nite constants. We present a general method for identifying well-posed problems, as well as for constructing an explicit representation of the solution of such problems. This representation has explicit x and t dependence, and it consists of an integral in the k-complex plane and of a discrete sum. As illustrative examples we solve some two-point boundary value problems for the equations iqt + qxx = 0 and qt + qxxx = 0.