982 resultados para Bitume modificatoMasticeMaster CurveDynamic Shear RheometerParticle Flow Code


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reentry of Hole 462A during Leg 89 resulted in the penetration of a further 140 m of basalt sheet-flows similar to those found during Leg 61 at the same site. Twelve volcanic units (45 to 56) were recognized, comprising a series of rapidly extruded, interlayered aphyric and poorly clinopyroxene-plagioclase-olivine phyric, nonvesicular basalts. All exhibit variable, mild hydration and oxidation, relative to fresh oceanic basalts, produced under reducing, low-CO2-activity conditions within the zeolite facies. Secondary assemblages are dominated by smectites, zeolites, and pyrite, produced by low-temperature reaction with poorly oxygenated seawater. No systematic mineralogical or chemical changes are observed with depth, although thin quenched units and more massive hypocrystalline units exhibit slightly different alteration parageneses. Chemically, the basalts are olivine- and quartz-normative tholeiites, characterized by low incompatible-element abundances, similar to mildly enriched MORB (approaching T-type), with moderate, chrondite-normalized, large-ionlithophile- element depletion patterns and generally lower or near-chrondritic ratios for many low-distribution-coefficient (KD) element pairs. In general, relative to cyclic MORB chemical variation, they are uniform throughout, although 3 chemical megagroups and 22 subgroups are recognized. It is considered that the megagroups represent separate low-pressure-fractionated systems (olivine + Plagioclase ± clinopyroxene), whereas minor variations within them (subgroups) indicate magma mixing and generation of near-steady-state conditions. Overall, relatively minor fractionation coupled with magma mixing produced a series of compositionally uniform lavas. Parental melts were produced by similar degrees of partial melting, although the source may have varied slightly in LIL-element content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prominent control on the flow over subaqueous dunes is the slope of the downstream leeside. While previous work has focused on steep (~30°), asymmetric dunes with permanent flow separation, little is known about dunes with lower lee-slope angles for which flow separation is absent or intermittent. Here, we present a laboratory investigation where we systematically varied the dune lee-slope, holding other geometric parameters and flow hydraulics constant, to explore effects on the turbulent flow field and flow resistance. Three sets of fixed dunes (lee-slopes of 10°, 20° and 30°) were separately installed in a 15 m long and 1 m wide flume and subjected to 0.20 m deep flow. Measurements consisted of high-frequency, vertical profiles collected with a Laser Doppler Velocimeter (LDV). We show that the temporal and spatial occurrence of flow separation decreases with dune lee-slope. Velocity gradients in the dune leeside depict a free shear layer downstream of the 30° dunes and a weaker shear layer closer to the bed for the 20° and 10° dunes. The decrease in velocity gradients leads to lower magnitude of turbulence production for gentle lee-slopes. Aperiodic, strong ejection events dominate the shear layer, but decrease in strength and frequency for low-angle dunes. Flow resistance of dunes decreases with lee-slope; the transition being non-linear. Over the 10°, 20° and 30° dunes, shear stress is 8%, 33% and 90 % greater than a flat bed, respectively. Our results demonstrate that dune lee-slope plays an important, but often ignored role in flow resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Serpentinite seamounts in the Mariana forearc have been explained as diapirs rising from the Benioff zone. This hypothesis predicts that the serpentinites should have low strengths as well as low densities relative to the surrounding rocks. Drilling during Leg 125 showed that the materials forming Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc are water-charged serpentinite muds of density <2 g/cm**3. Wykeham-Farrance torsion-vane tests showed that they are plastic solids with a rheology that bears many similarities to the idealized Cam clay soil model and is well described by critical-state soil mechanics. The serpentinite muds have ultimate strengths of 1.3 to 273.7 kPa and yield strengths of approximately 1.0 to 50 kPa. These muds thus are orders of magnitude weaker than salt and are, in fact, comparable in density and strength to common deep-sea clay muds. Such weak and low-density materials easily become diapiric. Serpentinite muds from the summit of Conical Seamount are weaker and more ductile than those on its flanks or on Torishima Forearc Seamount. Moreover, the summit muds do not contain the pronounced pure- and simple-shear fabrics that characterize those on the seamount flanks. The seamounts are morphologically similar to shield volcanoes, and anastomosing serpentinite debris flows descending from their summits are similar in map view to pahoehoe flows. These morphologic features, together with the physical properties of the muds and their similarities to other oceanic muds and the geochemistry of the entrained waters, suggest that many forearc serpentinite seamounts are gigantic (10-20 km wide, 1.5-2.0 km high) mud volcanoes that formed by the eruption of highly liquid serpentinite muds. Torishima Forearc Seamount, which is blanketed by more ìnormalî pelagic/volcaniclastic sediment, has probably been inactive since the Miocene. Conical Seamount, which seems to consist entirely of serpentinite mud and is venting fresh water of unusual chemistry from its summit, is presently active. Muds from the flanks of Conical Seamount are stronger and more brittle than those from the summit site, and muds from Torishima Forearc Seamount are stronger yet; this suggests that the serpentinite debris flows are compacted and dewatered as they mature. The shear fabrics probably result from downslope creep and flow, but may also be inherited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mud volcanoes (MV) are sources of mass and energy, transported from deeper levels of the sediment pile to the surface. Together with fluid and gas, thermal energy is emitted through these structures. Therefore heat flow determination is a sensible tool to detect and quantify the amount of convective flow. In the Gulf of Cadiz several mud volcanoes can be found along major tectonic lines (SWIM faults). We employ geothermal measurements to observe the activity of mud volcanoes and possible leakage at the faults apart from pronounced structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a synthesis of some 20,504 mineral analyses of ~500 Hole 735B gabbros, including 10,236 new analyses conducted for this paper. These are used to construct a mineral stratigraphy for 1.5-km-deep Hole 735B, the only long section of the lower crust drilled in situ in the oceans. At long wavelengths, generally >200 m, there is a good chemical correlation among the principal silicate phases, consistent with the in situ crystallization of three or four distinct olivine gabbro bodies, representing at least two major cycles of intrusion. Initial cooling and crystallization of these bodies must have been fairly rapid to form a crystal mush, followed by subsequent compaction and migration of late iron-titanium-rich liquids into shear zones and fractures through which they were emplaced to higher levels in the lower crust where they crystallized and reacted with the olivine gabbro host rock to form a wide variety of ferrogabbros. At the wave lengths of the individual intrusions, as represented by the several olivine gabbro sequences, there is a general upward trend of iron and sodium enrichment but a poor correlation between the compositions of the major silicate phases. This, together with a wide range in minor incompatible and compatible element concentrations in olivine and pyroxene at a given Mg#, is consistent with widespread permeable flow of late melt through these intrusions, in contrast to what has been documented for a 600-m section of reputedly fast-spreading ocean crust in the Oman Ophiolite. This unexpected finding could be related to enhanced compaction and deformation-controlled late-stage melt migration at the scale of intrusion at a slow-spreading ocean ridge, compared to the relatively static environment in the lower crust at fast-spreading ridges.