916 resultados para Biosynthesis Inhibitor
Resumo:
En la Enfermedad Coronaria (EC) existen factores genéticos, socioculturales, medioambientales y raciales adicionales a los factores de riesgo cardiovascular mayores que podrían influir en su presentación. Se desconoce el impacto de la raza en la severidad de la enfermedad coronaria en los pacientes extranjeros que son enviados a nuestro Servicio. Objetivos: Comparar la severidad de la EC multivaso en una población de pacientes de las Antillas y Nacionales, pareados por la escala Framingham. Metodología: Realizamos un estudio de corte transversal, comparando pacientes colombianos contra pacientes provenientes de las Antillas holandesas con similares factores de riesgo según escala de Framingham, catalogándolos por grupos de riesgo bajo, intermedio, alto y muy alto. Todos con EC severa multivaso documentada por angiografía coronaria desde enero del 2009 hasta Junio de 2011. Se excluyeron pacientes con antecedentes de intervención percutánea o quirúrgica previa. Resultados: Ingresaron 115 pacientes internacionales y 115 pacientes nacionales. La relación hombres/mujeres 3:1. La proporción de grupos de riesgo fue de bajo riesgo 2.5%, intermedio 15%, alto 19.3%, y muy alto 63.4%. El Syntax Score en pacientes nacionales fue 14.3+/-7.4 y en internacionales 22.2+/-10.5 p: 0.002. Conclusiones: En pacientes provenientes de las Antillas Holandesas, valorados en nuestra institución, se observó una mayor severidad de la enfermedad coronaria comparada con una población nacional con factores de riesgo similares. Estos hallazgos sugieren la influencia de la raza y factores genéticos en la severidad y extensión de la EC
Resumo:
La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.
Resumo:
As plantas sintetizam uma enorme variedade de metabolitos, que podem ser classificados em dois grupos, de acordo com as suas funções: metabolitos primários, que participam na nutrição e processos metabólicos essenciais no interior da própria planta, e metabolitos secundários (também referidos como produtos naturais), os quais influenciam as interacções ecológicas entre as plantas e o ambiente. Os carotenóides são metabolitos secundários derivados do isopreno. O isopentenil-pirofosfato (IPP) é a unidade básica para a biossíntese dos carotenóides. O esqueleto carbonado dos carotenóides é sintetizado por adição sucessiva das unidades em C5 que vão formar geranilgeranilpirofosfato, intermediário em C20 que por condensação origina a estrutura em C40. Recentemente assumia-se que todos os isoprenóides se sintetizavam a partir do acetil-CoA via ácido mevalónico. Estudos recentes mostraram que o percurso metabólico começa com a síntese do IPP via ácido mevalónico (MVA) e/ou via metileritritol 4-fosfato (MEP). Neste trabalho discutem-se os avanços no conhecimento destas diferentes vias m tabólicas assim como as enzimas e reacções envolvidas na biossíntese dos carotenóides a partir da unidade fundamental (IPP).
Resumo:
A modified chlorophyll fluorescence technique was evaluated as a rapid diagnostic test of the susceptibility of wheat cultivars to chlorotoluron. Two winter wheat cultivars (Maris Huntsman and Mercia) exhibited differential response to the herbicide. All of the parameters of chlorophyll fluorescence examined were strongly influenced by herbicide concentration. Additionally, the procedure adopted here for the examination of winter wheat cultivar sensitivity to herbicide indicated that the area above the fluorescence induction curve and the ratio F-V/F-M are appropriate chlorophyll fluorescence parameters for detection of differential herbicide response between wheat cultivars. The potential use of this technique as an alternative to traditional methods of screening new winter wheat cultivars for their response to photosynthetic inhibitor herbicide is demonstrated here.
Resumo:
Background: Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX) pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results: Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda) together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion: We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.
Resumo:
Results of previous laboratory studies suggest that high population density often buffers the effects of chemical stressors that predominately increase mortality. Mortality stressors act to release more resources for the survivors and, therefore, produce less-than-additive effects. By contrast, growth stressors are expected to have opposite results or more-than-additive effects. We investigated the effects of a growth inhibitor (lufenuron) on larval growth and survival of Chironomus riparius and examined its joint effects with density on population growth rate (PGR). Exposure to 60 mu g/kg sediment or greater inhibited larval growth, and exposure to 88 mu g/kg or greater often resulted in mortality before reaching emergence. The effects of lufenuron, however, differed with population density. At 88 mu g/kg, mortalities and, to a lesser extent, reduced fecundity resulted in a reduction in PGR at low density. Conversely, when populations were initiated at high density, PGR was similar to that of controls, because the few survivors reached maturity sooner and started producing offspring earlier. The effect of density as a growth stressor therefore was stronger than the effect of lufenuron, which had effects similar to those of a mortality stressor and produced less-than-additive effects. Longterm studies under field conditions, however, are needed before less-than-additive effects are considered to be the norm.
Resumo:
Objectives and methods: An influenza B virus plasmid-based rescue system was used to introduce site-specific mutations, previously observed in neuraminidase (NA) inhibitor-resistant viruses, into the NA protein of six recombinant viruses. Three mutations observed only among in vitro selected zanamivir-resistant influenza A mutants were introduced into the B/Beijing/1/87 virus NA protein, to change residue E116 to glycine, alanine or aspartic acid. Residue E116 was also mutated to valine, a mutation found in the clinic among oseltamivir-resistant viruses. An arginine to lysine change at position 291 (292 N2 numbering) mimicked that seen frequently in influenza A N2 clinical isolates resistant to oseltamivir. Similarly, an arginine to lysine change at position 149 (152 in N2 numbering) was made to reproduce the change found in the only reported zanamivir-resistant clinical isolate of influenza B virus. In vitro selection and prolonged treatment in the clinic leads to resistance pathways that require compensatory mutations in the haemagglutinin gene, but these appear not to be important for mutants isolated from immunocompetent patients. The reverse genetics system was therefore used to generate mutants containing only the NA mutation. Results and conclusions: With the exception of a virus containing the E116G mutation, mutant viruses were attenuated to different levels in comparison with wild-type virus. This attenuation was a result of altered NA activity or stability depending on the introduced mutation. Mutant viruses displayed increased resistance to zanamivir, oseltamivir and peramivir, with certain viruses displaying cross-resistance to all three drugs.
Resumo:
Objectives: Influenza A H3N2 viruses isolated recently have characteristic receptor binding properties that may decrease susceptibility to neuraminidase inhibitor drugs. A panel of clinical isolates and recombinant viruses generated by reverse genetics were characterized and tested for susceptibility to zanamivir. Methods: Plaque reduction assays and neuraminidase enzyme inhibition assays were used to assess susceptibility to zanamivir. Receptor binding properties of the viruses were characterized by differential agglutination of red blood cells (RBCs) from different species. Sequence analysis of the haemagglutinin (HA) and neuraminidase (NA) genes was carried out. Results: Characterization of a panel of H3N2 clinical isolates from 1968 to 2000 showed a gradual decrease in agglutination of chicken and guinea pig RBCs over time, although all isolates could agglutinate turkey RBCs equally. Sequence analysis of the HA and NA genes identified mutations in conserved residues of the HA1 receptor binding site, in particular Leu-226 --> Ile-226/Val-226, and modification of potential glycosylation site motifs. This may be indicative of changes in virus binding to sialic acid (SA) receptors in recent years. Although recent isolates had reduced susceptibility to zanamivir in MDCK cell based plaque reduction assays, no difference was found in an NA enzyme-inhibition assay. Assays with recombinant isogenic viruses showed that the recent HA, but not the NA, conferred reduced susceptibility to zanamivir. Conclusion: This study demonstrates that recent clinical isolates of influenza A H3N2 virus no longer agglutinate chicken RBCs, but despite significant receptor binding changes as a result of changes in HA, there was little variation in sensitivity of the NA to zanamivir.
Resumo:
A modified chlorophyll fluorescence technique was evaluated as a rapid diagnostic test of the susceptibility of wheat cultivars to chlorotoluron. Two winter wheat cultivars (Maris Huntsman and Mercia) exhibited differential response to the herbicide. All of the parameters of chlorophyll fluorescence examined were strongly influenced by herbicide concentration. Additionally, the procedure adopted here for the examination of winter wheat cultivar sensitivity to herbicide indicated that the area above the fluorescence induction curve and the ratio F-V/F-M are appropriate chlorophyll fluorescence parameters for detection of differential herbicide response between wheat cultivars. The potential use of this technique as an alternative to traditional methods of screening new winter wheat cultivars for their response to photosynthetic inhibitor herbicide is demonstrated here.
Resumo:
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert thi allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Resumo:
The soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI), is currently showing great promise as a novel cancer chemopreventive agent. In contrast to the wealth of research conducted on this compound, the anticancer effects of protease inhibitors isolated from other leguminous sources have received limited attention. In the current study, 7 protease inhibitor concentrates (PICs) were isolated from various leguminous sources (including soybean) and characterized. The effects of PICs on the proliferation of breast and prostate cancer cells were investigated in vitro. Chickpea PIC significantly inhibited the viability of MDA-MB-231 breast cancer and PC-3 and LNCaP prostate cancer cells at all concentrations tested (25-400 μg/ml). In addition, kidney bean (200, 400 μg/ml), soybean (50, 100 μg/ml), and mungbean (100, 200 μg/ml) PICs inhibited LNCaP cell viability. These findings suggest that leguminous PICs may possess similar anticancer properties to that of soybean BBI and deserve further study as possible chemopreventive agents.
Resumo:
Listeria monocytogenes, the causative agent of human listeriosis, is known for its ability to withstand severe environmental stresses. The glutamate decarboxylase (GAD) system is one of the principal systems utilized by the bacterium to cope with acid stress, a reaction that produces γ-aminobutyrate (GABA) from glutamate. Recently, we have shown that GABA can accumulate intracellularly under acidic conditions, even under conditions where no extracellular glutamate-GABA exchange is detectable. The GABA shunt, a pathway that metabolizes GABA to succinate, has been described for several other bacterial genera, and the present study sought to determine whether L. monocytogenes has this metabolic capacity, which, if present, could provide a possible route for succinate biosynthesis in L. monocytogenes. Using crude protein extracts from L. monocytogenes EGD-e, we show that this strain exhibits activity for the two main enzyme reactions in the GABA shunt, GABA aminotransferase (GABA-AT) and succinic semialdehyde dehydrogenase (SSDH). Two genes were identified as candidates for encoding these enzyme activities, argD (GABA-AT) and lmo0913 (SSDH). Crude protein extracts prepared from a mutant lacking a functional argD gene significantly reduced GABA-AT activity, while an lmo0913 mutant lost all detectable SSDH activity. The deletion of lmo0913 increased the acid tolerance of EGD-e and showed an increased accumulation of intracellular GABA, suggesting that this pathway plays a significant role in the survival of this pathogen under acidic conditions. This is the first report of such a pathway in the genus Listeria, which highlights an important link between metabolism and acid tolerance and also presents a possible compensatory pathway to partially overcome the incomplete tricarboxylic acid cycle of Listeria.