855 resultados para Bessaga-Pelczynski`s and Milutin`s theorems on separable C(K) spaces
Resumo:
The tomato cv. Fukuju nº. 2 was used for studying the effect of single and double infections with Potato virus X (PVX) and Tobacco mosaic virus (TMV). Mixed infection resulted in a synergistic increase of disease severity, where more growth reduction was seen with simultaneous inoculations than with sequential inoculations at four-day intervals. At five and 12 days post-inoculation, the increased severity of the disease coincided with enhancement of virus accumulation in the rapidly expanding upper leaves. The PVX concentration in leaves nº 5 to 7 of doubly infected plants was three to six fold that of singly infected ones, as determined by DAS-ELISA. Mixed infection with the L strain led to higher enhancement of PVX than with the TMV-L11A strain. The concentration of TMV-L was lower in double infection and significantly higher than TMV-L11A in both singly and doubly infected plants. Analyses of the PVX ORF2 by Western blot and Northern hybridization revealed the pattern of accumulation of the 25 kDa protein and the RNAs, respectively, following those of the virion and coat protein. The strain TMV-L11A overcame the resistance gene in cv. GCR 237 (Tm-1). In the upper leaf nº. 8, the concentration of PVX was three times higher in plants with mixed infection than with L11A. The concentrations of the L and OM (TMV strains) in both singly and doubly infected plants were at very low levels, and the synergistic effect on PVX concentration and disease severity was not observed.
Resumo:
Phoma leaf spot, caused by Phoma costarricensis poses a serious threat to coffee (Coffea arabica) production, especially in the highlands of the state of Minas Gerais, Brazil. Extracts of citric biomass, coffee berry husks and coffee leaves severely affected by rust caused by Hemileia vastatrix, were evaluated against P. costarricensis. In an in vitro assay, aqueous extracts of rusted leaves and berry husks plus the commercial extracts based on citric biomass named Ecolife® and Agromil® were tested at various dilutions on the mycelial growth inhibition of P. costarricensis. In vivo, coffee seedlings maintained in glasshouse, were sprayed with these extracts seven days before inoculation of P. costarricensis. Only extracts from citric biomass had inhibitory effects on the fungus. In vivo, Ecolife® (5 ml/l), Agromil® (5 g/l) and the aqueous extract of rusted coffee leaves (dilution 1:6) reduced Phoma leaf spot. Both, Ecolife® and the extract of rusted coffee leaves were significantly more effective in reducing the area under the lesion progress curve when applied at lower doses, indicating a possible effect on the induction of resistance.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ∼56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length h in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
After discovery of cuprates, a search for new high temperature superconducting families began and it led to the discovery of layered pnictide compounds with critical temperatures limited up to ~56 K. Pnictides consist elements from Group V of Periodic Table (nitrogen, phosphorus, arsenic, antimony and bismuth). In this work coherence length ξh in mixed state of pnictide superconductors is calculated numerically. In calculation is taken into account interband and intraband impurity scattering in framework of quasiclassical Eilenberger theory for s± pairing symmetry. Differences between Ginzburg-Landau and Eilenberger theories is shown and the comparison with existing models is done.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
Teoreettisen populaatiosynteesin avulla voidaan mallintaa tähtijoukkojen ja galaksien fotometrisiä ominaisuuksia yhdistämällä yksittäisten tähtien tuottama säteily, joka saadaan teoreettisista tähtien kehitysmalleista. Valitsemalla sopiva massajakauma syntyville tähdille voidaan muodostaa yksinkertainen tähtipopulaatio, joka koostuu saman ikäisistä ja kemialliselta koostumukseltaan yhtenäisistä tähdistä. Monimutkaisempia tähtipopulaatioita voidaan muodostaa konvoloimalla yksinkertaisten tähtipopulaatioiden luminositeetti jonkin valitun tähtienmuodostushistorian kanssa sekä yhdistämällä näin muodostettuja populaatioita. Tässä työssä tarkastellaan asymptoottisen jättiläishaaran (AGB) tähtien uusien, tarkentuneiden evoluutiomallien vaikutusta populaatiosynteesin tuloksiin niin yksinkertaisten tähtipopulaatioiden kuin galaksien mallinnukseen soveltuvien monimutkaisempien tähtipopulaatioiden kohdalla. Työn päätarkoitus on tuottaa uudistuneisiin malleihin perustuvat populaation massa-luminositeetti -suhteen ja värin väliset relaatiot (MLC-relaatiot). MLC-relaatioita voidaan käyttää populaation massan määrittämiseen sen fotometristen ominaisuuksien (väri, luminositeetti) perusteella. Lisäksi tutkitaan tähtienvälisen pölyn vaikutusta yksinkertaisen spiraaligalaksimallin MLC-relaatioihin. Työssä käytetyt tähtien kehitysmallit perustuvat julkaisuun Marigo et al. (Astronomy & Astrophysics 482, 2008). Havaitaan, että AGB-tähtien vaikutus populaation integroituun luminositeettiin on pieni näkyvillä aallonpituuksilla, mutta merkittävä lähi-infrapuna-alueella. Vaikutus MLC-relaatioihin on vastaavasti merkittävä tarkkailtaessa luminositeettia lähi-infrapunassa sekä käytettäessä värejä, joissa yhdistetään optisia ja lähi-infrapunan kaistoja. Todetaan, että MLC-relaatioiden käyttö lähi-infrapunassa edellyttää tarkentuneen AGB-vaiheen sisällyttämistä populaatiosynteesin malleihin. Tähtienvälisen pölyn vaikutus MLC-relaatioihin todetaan riippuvan käytetystä kaistasta ja väristä, mutta vaikutuksen havaitaan olevan suurin optisen ja lähi-infrapunan väriyhdistelmillä.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
ABSTRACT An experiment was conducted in a greenhouse at the Federal University of Lavras cultivated with American lettuce, cv. Raider-Plus. The aim of this study was to evaluate the effects of irrigation water depths applied by drip pulses and of soil coverage on crop yields and efficiency of water use. The experimental design used was randomized blocks with eight treatments and three replications, totaling twenty-four plots. The treatments consisted of soil with and without coverage (double-sided white and black plastic) associated with four irrigation management levels. Irrigation management consisted in reposition of irrigation depths based on crop evapotranspiration (ETc) with D1-100% of ETc, applied continuously (control), and D2 - 100% of ETc, D3 - 75% of ETc, and D4-50% of ETc, applied by pulses. Irrigation by pulses consisted in splitting the depths into six irrigation pulses with intervals of fifty minutes of rest. It was observed that pulse irrigation saved 25% of water in treatment without mulching and 50% when plastic mulching was used, contributing substantially to improve irrigation water efficiency.
Resumo:
ABSTRACT Swine wastewater (SW) application in agricultural soils may affect its microbial community in a long term. The objective of this study was to evaluate prospective changes in soil bacterial community after eight years continuous application of swine wastewater. The wastewater doses tested were 0; 100; 200 and 300 m3 ha-1, being applied from the beginning of the experiment and with or without recommended fertilization. Three soil samples were taken from each plot for determinations of basal respiration, microbial biomass and metabolic quotient. We also performed DGGE analysis and made a correlation between soil chemical conditions and microbial activity. Microbial community underwent significant structural changes from swine wastewater applications. Higher SW doses (200 and 300 m3 ha-1) influenced significantly (p <0.05) and benefitted certain bacteria groups.
Resumo:
Sfingomyeliner är viktiga sphingolipidmolekyler som finns i cellmembranets exoplastiska monolager. Sfingomyeliner är sällsynta i växter och mikroorganismer. Den enigmatiska sfingomelinmolekylen som Thudicum isolerade från hjärnvävnad i slutet på 1800-talet fick sitt namn på basen av det grekiska ordet”sfinx”. Sfingomyeliner återfinns speciallt rikligt i myelinskidorna i nervvävnad, var de sfingomyelinrika membranen bildar ett isolerande lager runt nervcellernas axoner. De polära sfingomyelinerna är viktiga beståndsdelar av ägg, mjölk och kött, och betraktas som viktiga näringsämnen speciellt för spädbarn. Det finns ett flertal sjukdomar uppstår på grund av defekter i sfingomyelinmetabolismen., t.ex. Niemann-Picks sjukdom, som är en obotlig ärftlig metabolisk sjukdom. Nyligen har det rapporterats att sfingomyelin tillsammans med kolesterol och specifika proteiner bildar funtionella domäner, s.k. membranflottar, i cellers membran. Membranflottar anses delta i många viktiga biologiska processer som t.ex. signalöverföring, lipid- och proteinsortering, apoptos, celladhesion, cellmigration och synapsers signalöverföring. Därför är det ytterst viktigt att förstå samverkan mellan sfingomyelin och kolesterol och hur denna samverkan påverkar bildandet membranflottar. I avhandlingen presenteras data från våra studier av sfingomyelin samverkan med kolesterol. För avhandlingen syntetiserade vi unika sfingomyelin molekyler genom att införa metyl- och hydroxylgrupper i olika positioner i sphingomyelinmolekylerna, med målet att lära oss mera om sphingomyelinets membranegenskaper och samverkan med kolesterol. Alla sfingomyelin molekyler som användes i avhandlingsarbetet är biologiskt relevanta. I studierna fann vi att hydroxyl- och amidgrupperna i sfingomyelin är viktiga i vätebindningar mellan sfingomyelinmolekyler samt mellan sfingomyelin och kolesterol. Vi upptäckte ytterligare att substition av metylgrupper i acylkedjan eller i interfasregionen hos sfingomyelinmolekyler signifikant destabiliserade sphingomyelin bilagret och försvagade/upphävde molekylernas samverkan med kolesterol. Hur sfingomyelinbilagrens stabilitet och sfingomyelinen-koleterol samverkan påverkades av hydroxylgrupper var beroende av hydrohygruppens position. Förekomst av en extra hydroxylgrupp i sfingomyelionmolekylens sfingoidbasen ökade stabilitetnen hos sfingomyelinbilagren samt stabiliserade sfingomyelinets samverkan med kolesterol.
Resumo:
Increased emissions of greenhouse gases into the atmosphere are causing an anthropogenic climate change. The resulting global warming challenges the ability of organisms to adapt to the new temperature conditions. However, warming is not the only major threat. In marine environments, dissolution of carbon dioxide from the atmosphere causes a decrease in surface water pH, the so called ocean acidification. The temperature and acidification effects can interact, and create even larger problems for the marine flora and fauna than either of the effects would cause alone. I have used Baltic calanoid copepods (crustacean zooplankton) as my research object and studied their growth and stress responses using climate predictions projected for the next century. I have studied both direct temperature and pH effects on copepods, and indirect effects via their food: the changing phytoplankton spring bloom composition and toxic cyanobacterium. The main aims of my thesis were: 1) to find out how warming and acidification combined with a toxic cyanobacterium affect copepod reproductive success (egg production, egg viability, egg hatching success, offspring development) and oxidative balance (antioxidant capacity, oxidative damage), and 2) to reveal the possible food quality effects of spring phytoplankton bloom composition dominated by diatoms or dinoflagellates on reproducing copepods (egg production, egg hatching, RNA:DNA ratio). The two copepod genera used, Acartia sp. and Eurytemora affinis are the dominating mesozooplankton taxa (0.2 – 2 mm) in my study area the Gulf of Finland. The 20°C temperature seems to be within the tolerance limits of Acartia spp., because copepods can adapt to the temperature phenotypically by adjusting their body size. Copepods are also able to tolerate a pH decrease of 0.4 from present values, but the combination of warm water and decreased pH causes problems for them. In my studies, the copepod oxidative balance was negatively influenced by the interaction of these two environmental factors, and egg and nauplii production were lower at 20°C and lower pH, than at 20°C and ambient pH. However, presence of toxic cyanobacterium Nodularia spumigena improved the copepod oxidative balance and helped to resist the environmental stress, in question. In addition, adaptive maternal effects seem to be an important adaptation mechanism in a changing environment, but it depends on the condition of the female copepod and her diet how much she can invest in her offspring. I did not find systematic food quality difference between diatoms and dinoflagellates. There are both good and bad diatom and dinoflagellate species. Instead, the dominating species in the phytoplankton bloom composition has a central role in determining the food quality, although copepods aim at obtaining as a balanced diet as possible by foraging on several species. If the dominating species is of poor quality it can cause stress when ingested, or lead to non-optimal foraging if rejected. My thesis demonstrates that climate change induced water temperature and pH changes can cause problems to Baltic Sea copepod communities. However, their resilience depends substantially on their diet, and therefore the response of phytoplankton to the environmental changes. As copepods are an important link in pelagic food webs, their future success can have far reaching consequences, for example on fish stocks.
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
Extracellular matrix plays an important role in chronic hepatic lesions and has been studied in experimental intoxication models. However in cattle, studies on chronic disease have focused on the hepatocellular damage and extracellular matrix (ECM) changes are usually overlooked. There are no specific studies on the hepatic ECM in either normal or chronically damaged bovine liver. Thus an experimental model of hepatic toxicity model using Senecio brasiliensis poisoned calves was designed. Senecio brasiliensis contains pyrrolizidine alkaloids which cause either acute or chronic progressive dose dependent liver damage. Five calves were orally fed with 0.38g of dry leaves of S. brasiliensis/kg/day for 24 days. Liver needle biopsy specimens were obtained every 15 days for 60 days. Clinical signs of digestive complications appeared at 3rd week. One calf died on 45th day and four were evaluated up to 60th day. Biopsy samples were processed for routine light microscopy, immuno-histochemistry and transmission electron microscopy. From 30th day on progressive liver damage characterized by hepatocellular ballooning, necrosis, apoptosis and megalocytosis, centrilobular, pericellular and portal fibrosis were seen by light microscopy. Quantitative and semi-quantitative measurements of hepatic ECM components were performed before and after the onset of lesions. Morphometric analysis of total collagen and elastic fiber system was conducted. Total collagen and I and III collagen types progressively increased in throughout the liver of affected calves. Changes in location, amount and disposition of the elastic fiber system were also observed. Then numbers of Kupffer cells were significantly increased at 30th day and total numbers of sinusoidal cells were significantly increased at 45th and 60th days. Liver damage was progressive and irreversible even after the exposure to the plant was discontinued. Severe fibrotic lesions occurred mainly in portal tracts, followed by veno-occlusive and pericellular fibrosis. Collagen types I and III s were present in every normal and damaged liver, with predominance of type I. In affected calves the increase of total collagen and elastic fibers system paralleled the number of total sinusoidal cells.