968 resultados para BRACHYDACTYLY TYPE-B
Resumo:
At head of title: ... U.S. Bureau of Public Roads' class B.
Resumo:
Reproduced from typewritten copy.
Resumo:
Mode of access: Internet.
Resumo:
Cover-title.
Resumo:
"Issued March 1982"--Verso of t.p.
Resumo:
Background Diastolic heart failure (DHF) is characterized by dyspnea due to increased left ventricular (LV) filling pressures during stress. We sought the relationship of exercise-induced increases in B-type natriuretic peptide (BNP) to LV filling pressures and parameters of cardiovascular performance in suspected DHF. Methods Twenty-six treated hypertensive patients with suspected DHF (exertional dyspnea, LV ejection fraction >50%, and diastolic dysfunction) underwent maximal exercise echocardiography using the Bruce protocol. BNP, transmitral Doppler, and tissue Doppler for systolic (So) and early (Ea) and late (Aa) diastolic mitral annular velocities were obtained at rest and peak stress. LV filling pressures were estimated with E/Ea ratios. Results Resting BNP correlated with resting pulse pressure (r=0.45, P=0.02). Maximal exercise performance (4.6 +/- 2.5min) was limited by dyspnea. Blood pressure increased with exercise (from 143 +/- 19/88 +/- 8 to 191 +/- 22/90 +/- 10 mm Hg); 13 patients (50%) had a hypertensive response. Peak exercise BNP correlated with peak transmitral E velocity (r = 0.41, P <.05) and peak heart rate (r = -0.40, P <.05). BNP increased with exercise (from 48 57 to 74 97 pg/mL, P =.007), and the increment of BNP with exercise was associated with maximal workload and peak exercise So, Ea, and Aa (P <.01 for all). Filling pressures, approximated by lateral E/Ea ratio, increased with exercise (7.7 +/- 2.0 to 10.0 +/- 4.8, P <.01). BNP was higher in patients with possibly elevated filling pressures at peak exercise (E/Ea >10) compared to those with normal pressures (123 +/- 124 vs 45 +/- 71 pg/mL, P =.027). Conclusions Augmentation of BNP with exercise in hypertensive patients with suspected DHF is associated with better exercise capacity, LV systolic and diastolic function, and left atrial function. Peak exercise BNP levels may identify exercise-induced elevation of filling pressures in DHF.
Resumo:
B-type natriuretic peptide (BNP) is the first biomarker of proven value in screening for left ventricular dysfunction. The availability of point-of-care testing has escalated clinical interest and the resultant research is defining a role for BNP in the investigation and treatment of critically ill patients. This review was undertaken with the aim of collecting and assimilating current evidence regarding the use of BNP assay in the evaluation of myocardial dysfunction in critically ill humans. The information is presented in a format based upon organ system and disease category. BNP assay has been studied in a spectrum of clinical conditions ranging from acute dyspnoea to subarachnoid haemorrhage. Its role in diagnosis, assessment of disease severity, risk stratification and prognostic evaluation of cardiac dysfunction appears promising, but requires further elaboration. The heterogeneity of the critically ill population appears to warrant a range of cut-off values. Research addressing progressive changes in BNP concentration is hindered by infrequent assay and appears unlikely to reflect the critically ill patient's rapidly changing haemodynamics. Multi-marker strategies may prove valuable in prognostication and evaluation of therapy in a greater variety of illnesses. Scant data exist regarding the use of BNP assay to alter therapy or outcome. It appears that BNP assay offers complementary information to conventional approaches for the evaluation of cardiac dysfunction. Continued research should augment the validity of BNP assay in the evaluation of myocardial function in patients with life-threatening illness.
Resumo:
Background There is limited information regarding the clinical utility of amino-terminal pro-B-type natriuretic pepticle (NT-proBNP) for the detection of left ventricular (LV) dysfunction in the community. We evaluated predictors of circulating NT-proBNP levels and determined the utility of NT-proBNP to detect systolic and diastolic LV dysfunction in older adults. Methods. A population-based sample of 1229 older adults (mean age 69.4 years, 50.1% women) underwent echocardiographic assessment of cardiac structure and function and measurement of circulating NT-proBNP levels. Results Predictors of NT-proBNP included age, female sex, body mass index, and cardiorenal parameters (diastolic dysfunction [DID] severity; LV mass and left atrial volume; right ventricular overload; decreasing ejection fraction [EF] and creatinine clearance). The performance of NT-proBNP to detect any degree of LV dysfunction, including mild DID, was poor (area under the curve 0.56-0.66). In contrast, the performance of NT-proBNP for the detection of EF 0.90 regardless of age and sex; history of hypertension, diabetes, coronary artery disease; or body mass category. The ability of NT-proBNP to detect EF
Resumo:
Background: There is scant data regarding methods to identify subjects in the community with preclinical left ventricular (LV) systolic and diastolic dysfunction. Methods: A population-based sample of 1229 older adults underwent examination with transthoracic echocardiography and measurement of circulating aminoterminal pro-Btype natriuretic peptide (N-BNP) levels. Heart failure status was ascertained according to past history and clinical examination. The ability of N-BNP to detect preclinical LV ejection fraction (EF)