961 resultados para B-Cell
Resumo:
Background-The presence of high level DNA microsatellite instability (MSI-H) in colorectal cancer is associated with an improved prognosis, as is the presence of tumour infiltrating lymphocytes (TILs). It is not clear if TILs contribute directly to the survival advantage associated with MSI-H cancers through activation of an antitumour immune response. Aims-To correlate TIL and apoptosis rates in colorectal cancer stratified by MSI status. Methods-The distribution of TILs was characterised and quantified in a selected series of 102 sporadic colorectal cancers classified according to levels of MSI as 32 MSI-H, 30 MSI-low (MSI-L), and 40 microsatellite stable (MSS). Archival blocks were immunostained using the T cell markers CD3 and CD8, and the B cell marker CD20. Apoptosis of malignant epithelial cells was quantified by immunohistochemistry with the M30 CytoDEATH antibody. Results-Positive staining with anti-CD3 and negative staining with anti-CD20 identified virtually all TILs as T cells. The majority of CD3(+) TILs (>75%) also stained with anti-CDS. TILs were most abundant in MSI-H colorectal cancers in which 23/32 (72%) scored as TIL positive. Only 5/40 (12.5%) MSS tumours and 9/30 (30%) MSI-L cancers were TIL positive (p
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
Epstein-Barr virus is a classic example of a persistent human virus that has caught the imagination of immunologists, virologists and oncologists because of the juxtaposition of a number of important properties. First, the ability of the virus to immortalize B lymphocytes in vitro has provided an antigen presenting cell in which all the latent antigens: of the virus are displayed and are available for systematic study. Second, the virus presents an ideal system for studying the immune parameters that maintain latency and the consequences of disturbing this cell-virus relationship. Third, this wealth of immunological background has provided a platform for elucidating the role of the immune system in protection from viral-associated malignancies of B cell and epithelial cell origin. Finally attention is now being directed towards the development of vaccine formulations which might have broad application in the control of human malignancies.
Resumo:
ATM, the gene mutated in the human immunodeficiency disorder ataxia-telangiectasia (A-T), plays a central role in recognizing ionizing radiation damage in DNA and in controlling several cell cycle checkpoints. We describe here a murine model in which a nine-nucleotide in-frame deletion has been introduced into the Atm gene by homologous recombination followed by removal of the selectable marker cassette by Cre-loxP site-specific, recombination-mediated excision. This mouse, Abm-Delta SRI, was designed as a model of one of the most common deletion mutations (7636de19) found in A-T patients. The murine Atm deletion results in the loss of three amino acid residues (SRI; 2556-2558) but produces near full-length detectable Atm protein that lacks protein kinase activity. Radiosensitivity was observed in Atm-Delta SRI mice, whereas the immunological profile of these mice showed greater heterogeneity of T-cell subsets than observed in Atm(-/-) mice. The life span of Atm-Delta SRI mice was significantly longer than that of Atm(-/-) mice when maintained under nonspecific pathogen-free conditions. This can be accounted for by a lower incidence of thymic lymphomas in Atm-Delta SRI mice up to 40 weeks, after which time the animals died of other causes. The thymic lymphomas in Atm-Delta SRI mice were characterized by extensive apoptosis, which appears to be attributable to an increased number of cells expressing Fas ligand. A variety of other tumors including B-cell lymphomas, sarcomas, and carcinomas not seen in Atm(-/-) mice were observed in older Atm-Delta SRI animals. Thus, expression of mutant protein in Atm-Delta SRI knock-in mice gives rise to a discernibly different phenotype to Atm(-/-) mice, which may account for the heterogeneity seen in A-T patients with different mutations.
Resumo:
The Epstein-Barr virus (EBV) encoded latent membrane protein (LMP1) plays a crucial role in the long-term persistence of this virus within the cells of the immune system. Not only is this protein critical for the transformation of resting B cells by EBV, it also displays pleiotropic effects on various cellular proteins expressed in the host cell. These include up-regulation of expression of B cell activation antigens, adhesion molecules and various components of the antigen processing pathway. Here we discuss how LMP1 acts like an expression 'switch' which, depending on the stage of EBV infection, manoeuvres various pathways that either modulate the immune system towards or against its survival.
Resumo:
Injection of particulate hepatitis B virus surface antigen (HBsAg) in mice leads to the induction of a HBsAg-specific class-I-restricted cytotoxic T lymphocyte (CTL) response. It is proposed that any protein internal to HBsAg will also be able to elicit a specific CTL response. In this study, several carboxy-terminal truncations of hepatitis C virus (HCV) core protein were fused to varying lengths of amino-terminal truncated large hepatitis delta antigen (L-HDAg). These constructs were analysed for their ability to be expressed and the particles secreted in the presence of HBsAg after transfection into HuH-7 cells. The secretion efficiency of the various HCV core-HDAg chimeric proteins was generally poor. Constructs containing full length HDAg appeared to be more stable than truncated versions and the length of the inserted protein was restricted to around 40 amino acids. Thus, the use of L-HDAg as a chimera to package foreign proteins is limited. Consequently, a polyepitope (polytope) containing a B-cell epitope from human papillomavirus (HPV 16) and multiple T-cell epitopes from the HCV polyprotein was used to create the construct, L-HDAg-polyB. This chimeric protein was shown to be reliant on the co-expression of HBsAg for secretion into the cell culture fluid and was secreted more efficiently than the previous HCV core-HDAg constructs. These L-HDAg-polyB virus-like particles (VLPs) had a buoyant density of similar to 1.2 g/cm(3) in caesium chloride and similar to 1.15 g/cm(3) in sucrose. The VLPs were also immunoprecipitated using an anti-HBs but not an anti-HD antibody. Thus, these recombinant VLPs have similar biophysical properties to L-HDAg VLPs.
Resumo:
Rheumatic fever (RF)/rheumatic heart disease (RHD) and post-streptococcal glomerulonephritis are thought to be autoimmune diseases, and follow group A streptococcal (GAS) infection. Different GAS M types have been associated with rheumatogenicity or nephritogenicity and categorized into either of two distinct classes (I or II) based on amino acid sequences present within the repeat region ('C' repeats) of the M protein. Sera from ARF patients have previously been shown to contain elevated levels of antibodies to the class I-specific epitope and myosin with the class I-specific antibodies also being cross-reactive to myosin, suggesting a disease association. This study shows that immunoreactivity of the class I-specific peptide and myosin does not differ between controls and acute RF (ARF)/RHD in populations that are highly endemic for GAS, raising the possibility that the association is related to GAS exposure, not the presence of ARF/RHD. Peptide inhibition studies suggest that the class I epitope may be conformational and residue 10 of the peptide is critical for antibody binding. We demonstrate that correlation of antibody levels between the class I and II epitope is due to class II-specific antibodies recognizing a common epitope with class I which is contained within the sequence RDL-ASRE. Our results suggest that antibody prevalence to class I and II epitopes and myosin is associated with GAS exposure, and that antibodies to these epitopes are not an indicator of disease nor a pathogenic factor in endemic populations.
Resumo:
Objectives. The MUC1 antigen can be used to identify epithelial cells from the background of hemopoietic cells. The present investigation describes patterns of overexpression of two novel MUC1 splice variants in human cervical carcinoma cell lines. Methods. RT-PCR was carried out to determine MUC1 splice variants in the cervical cancer cell lines C-4 II, C-33A, DoTc 2 4510, C-4 I, SiHa, HT3, Hs 636 T (C4-I), and HeLa. Results. The novel MUC1 splice variant D was expressed in all cell lines and the novel MUC1 splice variant C was expressed in all cell lines but C-33A. Variants A and B were expressed in all (variant A) and all but one (variant B) cell line. MUC1/REP was expressed in all cell lines and MUC1/SEC was positive in all but two cell lines (C-33 A, DoTc 2 4510). All but one cell line (C-33A) expressed MUC1/X and MUC1/Y, and two cell lines (C-33 A, DoTc 2 4510) did not express MUC1/Z, respectively. MUC1 variants A, D, and REP could be demonstrated consistently among all eight cervical carcinoma cell lines we have examined. Conclusions. The present study describes the feasibility of detecting a large number of MUC1 variants, including MUC1 variants C and D which are described for cervical carcinoma cells for the first time. Further studies will examine the presence of MUC1 splice variants' expression in human cervical carcinoma tissue.
Resumo:
The Sox gene family (Sry like HMG box gene) is characterised by a conserved DNA sequence encoding a domain of approximately 80 amino acids which is responsible for sequence specific DNA binding. We initially published the identification and partial cDNA sequence of murine Sox18, a new member of this gene family, isolated from a cardiac cDNA library. This sequence allowed us to classify Sox18 into the F sub-group of Sox proteins, along with Sox7 and Sox17. Recently, we demonstrated that mutations in the Sox18 activation domain underlie cardiovascular and hair follicle defects in the mouse mutation, ragged (Ra) (Pennisi et al., 2000. Mutations in Sox18 underlie cardiovascular and hair follicle defecs in ragged mice. Nat. Genet. 24, 434-437). Ra homozygotes lack vibrissae and coat hairs, have generalised oedema and an accumulation of chyle in the peritoneum. Here we have investigated the genomic sequences encoding Sox18. Screening of a mouse genomic phage library identified four overlapping clones, we sequenced a 3.25 kb XbaI fragment that defined the entire coding region and approximately 1.5 kb of 5' flanking sequences. This identified (i) an additional 91 amino acids upstream of the previously designated methionine start codon in the original cDNA, and (ii);ln intron encoded within the HMG box/DNA binding domain in exactly the same position as that found in the Sox5, -13 and -17 genes. The Sox18 gene encodes a protein of 468 aa. We present evidence that suggests HAF-2, the human HMG-box activating factor-2 protein, is the orthologue of murine Sox18. HAF-2 has been implicated in the regulation of the Human IgH enhancer in a B cell context. Random mutagenesis coupled with GAL4 hybrid analysis in the activation domain between amino acids 252 and 346, of Sox18, implicated the phosphorylation motif, SARS, and the region between amino acid residues 313 and 346 as critical components of Sox18 mediated transactivation. Finally, we examined the expression of Sox18 in multiple adult mouse tissues using RT-PCR. Low-moderate expression was observed in spleen, stomach, kidney, intestine, skeletal muscle and heart. Very abundant expression was detected in lung tissue. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
It is now 35 years since Brandtzaeg and Kraus (1965) published their seminal work entitled Autoimmunity and periodontal disease. Initially, this work led to the concept that destructive periodontitis was a localized hypersensitivity reaction involving immune complex formation within the tissues. In 1970, Ivanyi and Lehner highlighted a possible role for cell-mediated immunity, which stimulated a flurry of activity centered on the role of lymphokines such as osteoclast-activating factor (OAF), macrophage-activating factor (MAF), macrophage migration inhibition factor (MIF), and myriad others. In the late 1970s and early 1980s, attention focused on the role of polymorphonuclear neutrophils, and it was thought that periodontal destruction occurred as a series of acute exacerbations. As well, at this stage doubt was being cast on the concept that there was a neutrophil chemotactic defect in periodontitis patients. Once it was realized that neutrophils were primarily protective and that severe periodontal destruction occurred in the absence of these cells, attention swung back to the role of lymphocytes and in particular the regulatory role of T-cells. By this time in the early 1990s, while the roles of interleukin (IL)-1, prostaglandin (PG) E-2, and metalloproteinases as the destructive mediators in periodontal disease were largely understood, the control and regulation of these cytokines remained controversial. With the widespread acceptance of the Th1/Th2 paradigm, the regulatory role of T-cells became the main focus of attention, Two apparently conflicting theories have emerged. One is based on direct observations of human lesions, while the other is based on animal model experiments and the inability to demonstrate IL-4 mRNA in gingival extracts. As part of the Controversy series, this review is intended to stimulate debate and hence may appear in some places provocative. In this context, this review will present the case that destructive periodontitis is due to the nature of the lymphocytic infiltrate and is not due to periodic acute exacerbations, nor is it due to the so-called virulence factors of putative periodontal pathogens.
Resumo:
Differentiated dendritic cells (DC) have been identified by the presence of nuclear RelB (nRelB) and HLA-DR, and the absence of CD20 or high levels of CD68, in lymph nodes and active rheumatoid arthritis synovial tissue. The current studies aimed to identify conditions in which nRelB is expressed in human tissues, by single and double immunohistochemistry of formalin-fixed peripheral and lymphoid tissue. Normal peripheral tissue did not contain nRelB(+) cells. nRelB(+) DC were located only in T- or B-cell areas of lymphoid tissue associated with normal organs or peripheral tissues, including tonsil, colon, spleen and thymus, or in association with T cells in inflamed peripheral tissue. Inflamed sites included skin delayed-type hypersensitivity reaction, and a wide range of tissues affected by autoimmune disease. Nuclear RelB(+) -HLA-DR- follicular DC were located in B-cell follicles in lymphoid organs and in lymphoid-like follicles of some tissues affected by autoimmune disease. Lymphoid tissue T-cell areas also contained nRelB(-) -HLA-DR+ cells, some of which expressed CD123 and/or CD68. Nuclear RelB(+) cells are found in normal lymphoid organs and in peripheral tissue in the context of inflammation, but not under normal resting conditions.
Resumo:
The study reported here investigated the immunogenicity and protective potential of a lipid core peptide (LCP) construct containing a conserved region determinant of M protein, defined as peptide J8. Parenteral immunization of mice with LCP-J8 led to the induction of high-titer serum immunoglobulin G J18-specific antibodies when the construct was coadministered with complete Freund's adjuvant (CFA) or administered alone. LCP-J8 in CFA had significantly enhanced immunogenicity compared with the monomeric peptide J8 given in CFA. Moreover, LCP-J8/CFA and LCP-J8 antisera opsonized four different group A streptococcal (GAS) strains, and the antisera did not cross-react with human heart tissue proteins. These data indicate the potential of an LCP-based M protein conserved region GAS vaccine in the induction of broadly protective immune responses in the absence of a conventional adjuvant.
Resumo:
Lipoamino acid-based synthetic peptides (lipid core peptides, LCP) derived from the type-specific and conserved region determinants of group A streptococci (GAS) were evaluated as potential candidate sequences in a vaccine to prevent GAS-associated diseases, including rheumatic heart, disease and poststreptococcal acute glomerulonephritis. The LCP peptides had significantly enhanced immunogenicity as compared with the monomeric peptide epitopes. Furthermore, the peptides incorporated into the LCP system generated epitope-specific antibodies without the use of any conventional adjuvant.
Resumo:
Primary vaccine strategies against group A streptococci (GAS) have focused on the M protein-the target of opsonic antibodies important for protective immunity. We have previously reported protection of mice against GAS infection following parenteral delivery of a multi-epitope vaccine construct, referred to as a heteropolymer. This current report has assessed mucosal (intranasal (i.n.) and oral) delivery of the heteropolymer in mice with regard to the induction and specificity of mucosal and systemic antibody responses, and compared this to parenteral delivery. GAS-specific IgA responses were detected in saliva and gut upon i.n. and oral delivery of the heteropolymer co-administered with cholera toxin B subunit, respectively. High titre serum IgG responses were elicited to the heteropolymer following all routes of delivery when administered with adjuvant. Moreover, as with parenteral delivery, serum IgG antibodies were detected to the individual heteropolymer peptides following i.n. but not oral delivery. These data support the potential of the i.n. route in the mucosal delivery of a GAS vaccine. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A conserved helical peptide vaccine candidate from the M protein of group A streptococci, p145, has been described. Minimal epitopes within p145 have been defined and an epitope recognized by protective antibodies, but not by autoreactive T cells, has been identified. When administered to mice, p145 has low immunogenicity. Many boosts of peptide are required to achieve a high antibody titre (> 12 800). To attempt to overcome this low immunogenicity, lipid-core peptide technology was employed. Lipid-core peptides (LCP) consist of an oligomeric polylysine core, with multiple copies of the peptide of choice, conjugated to a series of lipoamino acids, which acts as an anchor for the antigen. Seven different LCP constructs based on the p145 peptide sequence were synthesized (LCP1-->LCP7) and the immunogenicity of the compounds examined. The most immunogenic constructs contained the longest alkyl side-chains. The number of lipoamino acids in the constructs affected the immunogenicity and spacing between the alkyl side-chains increased immunogenicity. An increase in immunogenicity (enzyme-linked immunosorbent assay (ELISA) titres) of up to 100-fold was demonstrated using this technology and some constructs without adjuvant were more immunogenic than p145 administered with complete Freund's adjuvant (CFA). The fine specificity of the induced antibody response differed for the different constructs but one construct, LCP4, induced antibodies of identical fine specificity to those found in endemic human serum. Opsonic activity of LCP4 antisera was more than double that of p145 antisera. These data show the potential for LCP technology to both enhance immunogenicity of complex peptides and to focus the immune response towards or away from critical epitopes.