973 resultados para B lymphocytes
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
This thesis investigated how enzymes called phosphodiesterases control changes in contractility mediated by noradrenaline and adrenaline through activation of β1- and β2-adrenoceptors in live human heart tissue from patients with advanced heart failure undergoing transplantation. The study compared patients who had been administered β-blocker medicines metoprolol or carvedilol or no β-blocker treatment. This work helped to further elucidate the complex roles of target receptors and enzymes that are integral to the progression of heart failure, to compare the mechanisms of action of β-blockers currently used to manage heart failure and to identify new drug targets for heart failure treatment.
Resumo:
Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.
Resumo:
As mentioned in the letter by van der Linden and van der Heijde, Jurgen Braun’s excellent recent paper describing a survey of blood donors by questionnaire, clinical, and magnetic resonance imaging examinations revealed a prevalence of ankylosing spondylitis in B27 positive blood donors (6.4%)1-1 very similar to that reported by Gran et al(6.7%).1-2 It is probable that some of the differences in reported prevalence of ankylosing spondylitis by the various studies are because of methodological differences.
Resumo:
Objective. To examine whether the T cell receptor (TCR) A or TCRB loci exhibit linkage with disease in multiplex rheumatoid arthritis (RA) families. Methods. A linkage study was performed in 184 RA families from the UK Arthritis and Rheumatism Council Repository, each containing at least 1 affected sibpair. The microsatellites D14S50, TCRA, and D14S64 spanning the TCRA locus and D7S509, Vβ6.7, and D7S688 spanning the TCRB locus were used as DNA markers. The subjects were genotyped using a semiautomated polymerase chain reaction-based method. Two-point and multipoint linkage analyses were performed. Results. Nonparametric single-marker likelihood odds (LOD) scores were 0.49 (P = 0.07) for D14S50, 0.65 (P = 0.04) for TCRA, 0.07 (P = 0.29) for D14S64, 0.01 (P = 0.43) for D7S509, 0.0 (P = 0.50) for Vβ6.7, and 0.0 (P = 0.50) for D7S688. By multipoint analysis, there was no evidence of linkage at TCRB (LOD score 0), and the maximum LOD score at the TCRA locus was 0.37 (at D14S50). The presence of a susceptibility locus (LOD score < -2.0) was excluded, with lambda ≤ 1.8 at TCRA and ≤1.4 at TCRB. Conclusion. These linkage studies provide no significant evidence of a major germline-encoded TCRA or TCRB component of susceptibility to RA.
Resumo:
Background Despite the critical role of immunoglobulin E (IgE) in allergy, circulating IgE+ B cells are scarce. Here, we describe in patients with allergic rhinitis B cells with a memory phenotype responding to a prototypic aeroallergen. Methods Fifteen allergic rhinitis patients with grass pollen allergy and 13 control subjects were examined. Blood mononuclear cells stained with carboxyfluorescein diacetate succinimidyl ester (CFSE) were cultured with Bahia grass pollen. Proliferation and phenotype were assessed by multicolour flow cytometry. Results In blood of allergic rhinitis patients with high serum IgE to grass pollen, most IgEhi cells were CD123+ HLA-DR- basophils, with IgE for the major pollen allergen (Pas n 1). Both B and T cells from pollen-allergic donors showed higher proliferation to grass pollen than nonallergic donors (P = 0.002, and 0.010, respectively), whereas responses to vaccine antigens and mitogen did not differ between groups. Allergen-driven B cells that divided rapidly (CD19mid CD3- CFSElo) showed higher CD27 (P = 0.008) and lower CD19 (P = 0.004) and CD20 (P = 0.004) expression than B cells that were slow to respond to allergen (CD19hi CD3- CFSEmid). Moreover, rapidly dividing allergen-driven B cells (CD19mid CFSElo CD27hi) showed higher expression of the plasmablast marker CD38 compared with B cells (CD19hi CFSEmid CD27lo) that were slow to divide. Conclusion Patients with pollen allergy but not control donors have a population of circulating allergen-specific B cells with the phenotype and functional properties of adaptive memory B-cell responses. These cells could provide precursors for allergen-specific IgE production upon allergen re-exposure. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Resumo:
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (106–107 CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Resumo:
Substantial progress has been achieved in antiviral therapy for chronic hepatitis B; however, options for women of child-bearing age with HBeAg-positive chronic hepatitis B remain a challenge. In this study, we sought to determine whether de novo combination therapy of Adefovir plus Lamivudine was a super treatment for women of child-bearing age with HBeAg-positive chronic hepatitis B prior to conception. A total of 122 women patients of child-bearing age with HBeAg-positive chronic hepatitis B were randomly assigned to receive (i) 10 mg Adefovir plus 100 mg Lamivudine (64 patients) or (ii) 10 mg Adefovir monotherapy (58 patients), administrated orally once daily for 96 weeks. The therapeutic efficacy within each group was compared at weeks 48 and 96. The results showed that de novo combination therapy of Adefovir plus Lamivudine significantly reduced HBV-DNA detectability, and enhanced ALT normalization and HBeAg seroconversion in women of child-bearing age with HBeAg-positive chronic hepatitis B. No virological breakthrough and genotypic resistance were observed in the combination therapy group. Additionally, the combination therapy with Adefovir plus Lamivudine was well tolerated. This study suggests that de novo combination therapy of Adefovir plus Lamivudine offers a therapeutic advantage for women of child-bearing age with HBeAg-positive chronic hepatitis B when taken before conception.
Resumo:
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense. © 2012 Nature America, Inc. All rights reserved.
Resumo:
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis. © 2011 Macmillan Publishers Limited. All rights reserved.
Resumo:
Ankylosing spondylitis is a common form of inflammatory arthritis predominantly affecting the spine and pelvis that occurs in approximately 5 out of 1,000 adults of European descent. Here we report the identification of three variants in the RUNX3, LTBR-TNFRSF1A and IL12B regions convincingly associated with ankylosing spondylitis (P < 5 × 10-8 in the combined discovery and replication datasets) and a further four loci at PTGER4, TBKBP1, ANTXR2 and CARD9 that show strong association across all our datasets (P < 5 × 10-6 overall, with support in each of the three datasets studied). We also show that polymorphisms of ERAP1, which encodes an endoplasmic reticulum aminopeptidase involved in peptide trimming before HLA class I presentation, only affect ankylosing spondylitis risk in HLA-B27-positive individuals. These findings provide strong evidence that HLA-B27 operates in ankylosing spondylitis through a mechanism involving aberrant processing of antigenic peptides.
Resumo:
The HLA-B27 subtypes have a varied racial and ethnic prevalence throughout the world. However, the association of B27-subtypes with ankylosing spondylitis (AS) in the mainland China is unknown. To determine the association of B27-subtypes with AS in the Mainland Chinese Han population, a total of unrelated 153 patients with AS were enrolled in a large case-control association study, and 1545 unrelated, healthy, ethnically matched blood donors were included as controls. The genotyping of B27 and its subtypes was performed using the polymerase chain reaction with sequence specific primers (PCR-SSP). A total of 130 (84.97%) AS patients and 61 (3.95%) healthy controls were B27 positive. Three B27-subtypes, B*2704, B*2705 and B*2710, were further identified, of which both B*2704 and B*2705 were strongly AS associated. B*2710 was only detected in one AS patient and two other healthy controls. Considering only B27-positive cases and controls, a statistically different frequency of B27-subtypes was observed, with an over-representation of B*2704 (P = 0.018). B*2704 was clearly more strongly associated than B*2705 with AS [odds ratio (OR) = 2.4, P = 0.011]. Furthermore, a combined analysis including three previous studies of B27-subtype distributions in Chinese AS cases confirmed the stronger association of B*2704 with AS than B*2705 (OR = 2.5, P = 0.00094).
Resumo:
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...
Resumo:
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.