971 resultados para Auto-ID,
Resumo:
This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.
Resumo:
A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.
Resumo:
The use of n-tuple or weightless neural networks as pattern recognition devices has been well documented. They have a significant advantages over more common networks paradigms, such as the multilayer perceptron in that they can be easily implemented in digital hardware using standard random access memories. To date, n-tuple networks have predominantly been used as fast pattern classification devices. The paper describes how n-tuple techniques can be used in the hardware implementation of a general auto-associative network.
Resumo:
Market liberalization in emerging-market economies and the entry of multinational firms spur significant changes to the industry/institutional environment faced by domestic firms. Prior studies have described how such changes tend to be disruptive to the relatively backward domestic firms, and negatively affect their performance and survival prospects. In this paper, we study how domestic supplier firms may adapt and continue to perform, as market liberalization progresses, through catch-up strategies aimed at integrating with the industry's global value chain. Drawing on internalization theory and the literatures on upgrading and catch-up processes, learning and relational networks, we hypothesize that, for continued performance, domestic supplier firms need to adapt their strategies from catching up initially through technology licensing/collaborations and joint ventures with multinational enterprises (MNEs) to also developing strong customer relationships with downstream firms (especially MNEs). Further, we propose that successful catch-up through these two strategies lays the foundation for a strategy of knowledge creation during the integration of domestic industry with the global value chain. Our analysis of data from the auto components industry in India during the period 1992–2002, that is, the decade since liberalization began in 1991, offers support for our hypotheses.
Resumo:
In the last decade, several research results have presented formulations for the auto-calibration problem. Most of these have relied on the evaluation of vanishing points to extract the camera parameters. Normally vanishing points are evaluated using pedestrians or the Manhattan World assumption i.e. it is assumed that the scene is necessarily composed of orthogonal planar surfaces. In this work, we present a robust framework for auto-calibration, with improved results and generalisability for real-life situations. This framework is capable of handling problems such as occlusions and the presence of unexpected objects in the scene. In our tests, we compare our formulation with the state-of-the-art in auto-calibration using pedestrians and Manhattan World-based assumptions. This paper reports on the experiments conducted using publicly available datasets; the results have shown that our formulation represents an improvement over the state-of-the-art.
Resumo:
This paper proposes a novel way to combine different observation models in a particle filter framework. This, so called, auto-adjustable observation model, enhance the particle filter accuracy when the tracked objects overlap without infringing a great runtime penalty to the whole tracking system. The approach has been tested under two important real world situations related to animal behavior: mice and larvae tracking. The proposal was compared to some state-of-art approaches and the results show, under the datasets tested, that a good trade-off between accuracy and runtime can be achieved using an auto-adjustable observation model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an automatic device for in situ and continuous monitoring of the ageing process occurring in natural and synthetic resins widely used in art and in the conservation and restoration of cultural artefacts. The results of tests carried out under accelerated ageing conditions are also presented. This easy-to-assemble palm-top device, essentially consists of oscillators based on quartz crystal resonators coated with films of the organic materials whose response to environmental stress is to be addressed. The device contains a microcontroller which selects at pre-defined time intervals the oscillators and records and stores their oscillation frequency. The ageing of the coatings, caused by the environmental stress and resulting in a shift in the oscillation frequency of the modified crystals, can be straightforwardly monitored in this way. The kinetics of this process reflects the level of risk damage associated with a specific microenvironment. In this case, natural and artificial resins, broadly employed in art and restoration of artistic and archaeological artefacts (dammar and Paraloid B72), were applied onto the crystals. The environmental stress was represented by visible and UV radiation, since the chosen materials are known to be photochemically active, to different extents. In the case of dammar, the results obtained are consistent with previous data obtained using a bench-top equipment by impedance analysis through discrete measurements and confirm that the ageing of this material is reflected in the gravimetric response of the modified quartz crystals. As for Paraloid B72, the outcome of the assays indicates that the resin is resistant to visible light, but is very sensitive to UV irradiation. The use of a continuous monitoring system, apart from being obviously more practical, is essential to identify short-term (i.e. reversible) events, like water vapour adsorption/desorption processes, and to highlight ageing trends or sudden changes of such trends. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Dissertação apresentada ao Programa de Mestrado em Comunicação da Universidade Municipal de São Caetano do Sul - USCS