953 resultados para Artificial Intelligence, Constraint Programming, set variables, representation
Resumo:
This introduction gives a general perspective of the debugging methodology and the tools developed in the ESPRIT IV project DiSCiPl Debugging Systems for Constraint Programming. It has been prepared by the editors of this volume by substantial rewriting of the DiSCiPl deliverable CP Debugging Tools [1]. This introduction is organised as follows. Section 1 outlines the DiSCiPl view of debugging, its associated debugging methodology, and motivates the kinds of tools proposed: the assertion based tools, the declarative diagnoser and the visualisation tools. Sections 2 through 4 provide a short presentation of the tools of each kind. Finally, Section 5 presents a summary of the tools developed in the project. This introduction gives only a general view of the DiSCiPl debugging methodology and tools. For details and for specific bibliographic referenees the reader is referred to the subsequent chapters.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.
Resumo:
With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Artificial Neural Networks still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning ANN parameters. In recent years the use of hybrid technologies, combining Artificial Neural Networks and Genetic Algorithms, has been utilized to. In this work, several ANN topologies were trained and tested using Artificial Neural Networks and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out.
Resumo:
This paper introduces a semantic language developed with the objective to be used in a semantic analyzer based on linguistic and world knowledge. Linguistic knowledge is provided by a Combinatorial Dictionary and several sets of rules. Extra-linguistic information is stored in an Ontology. The meaning of the text is represented by means of a series of RDF-type triples of the form predicate (subject, object). Semantic analyzer is one of the options of the multifunctional ETAP-3 linguistic processor. The analyzer can be used for Information Extraction and Question Answering. We describe semantic representation of expressions that provide an assessment of the number of objects involved and/or give a quantitative evaluation of different types of attributes. We focus on the following aspects: 1) parametric and non-parametric attributes; 2) gradable and non-gradable attributes; 3) ontological representation of different classes of attributes; 4) absolute and relative quantitative assessment; 5) punctual and interval quantitative assessment; 6) intervals with precise and fuzzy boundaries
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology-Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
Currently, there is a great deal of well-founded explicit knowledge formalizing general notions, such as time concepts and the part_of relation. Yet, it is often the case that instead of reusing ontologies that implement such notions (the so-called general ontologies), engineers create procedural programs that implicitly implement this knowledge. They do not save time and code by reusing explicit knowledge, and devote effort to solve problems that other people have already adequately solved. Consequently, we have developed a methodology that helps engineers to: (a) identify the type of general ontology to be reused; (b) find out which axioms and definitions should be reused; (c) make a decision, using formal concept analysis, on what general ontology is going to be reused; and (d) adapt and integrate the selected general ontology in the domain ontology to be developed. To illustrate our approach we have employed use-cases. For each use case, we provide a set of heuristics with examples. Each of these heuristics has been tested in either OWL or Prolog. Our methodology has been applied to develop a pharmaceutical product ontology. Additionally, we have carried out a controlled experiment with graduated students doing a MCs in Artificial Intelligence. This experiment has yielded some interesting findings concerning what kind of features the future extensions of the methodology should have.
Resumo:
In this paper we present a revisited classification of term variation in the light of the Linked Data initiative. Linked Data refers to a set of best practices for publishing and connecting structured data on the Web with the idea of transforming it into a global graph. One of the crucial steps of this initiative is the linking step, in which datasets in one or more languages need to be linked or connected with one another. We claim that the linking process would be facilitated if datasets are enriched with lexical and terminological information. Being that the final aim, we propose a classification of lexical, terminological and semantic variants that will become part of a model of linguistic descriptions that is currently being proposed within the framework of the W3C Ontology- Lexica Community Group to enrich ontologies and Linked Data vocabularies. Examples of modeling solutions of the different types of variants are also provided.
Resumo:
This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan.
Resumo:
This paper describes a knowledge model for a configuration problem in the do-main of traffic control. The goal of this model is to help traffic engineers in the dynamic selection of a set of messages to be presented to drivers on variable message signals. This selection is done in a real-time context using data recorded by traffic detectors on motorways. The system follows an advanced knowledge-based solution that implements two abstract problem solving methods according to a model-based approach recently proposed in the knowledge engineering field. Finally, the paper presents a discussion about the advantages and drawbacks found for this problem as a consequence of the applied knowledge modeling ap-proach.
Resumo:
Shopping agents are web-based applications that help consumers to find appropriate products in the context of e-commerce. In this paper we argue about the utility of advanced model-based techniques that recently have been proposed in the fields of Artificial Intelligence and Knowledge Engineering, in order to increase the level of support provided by this type of applications. We illustrate this approach with a virtual sales assistant that dynamically configures a product according to the needs and preferences of customers.
Resumo:
Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.
Resumo:
A lo largo de las últimas décadas el desarrollo de la tecnología en muy distintas áreas ha sido vertiginoso. Su propagación a todos los aspectos de nuestro día a día parece casi inevitable y la electrónica de consumo ha invadido nuestros hogares. No obstante, parece que la domótica no ha alcanzado el grado de integración que cabía esperar hace apenas una década. Es cierto que los dispositivos autónomos y con un cierto grado de inteligencia están abriéndose paso de manera independiente, pero el hogar digital, como sistema capaz de abarcar y automatizar grandes conjuntos de elementos de una vivienda (gestión energética, seguridad, bienestar, etc.) no ha conseguido extenderse al hogar medio. Esta falta de integración no se debe a la ausencia de tecnología, ni mucho menos, y numerosos son los estudios y proyectos surgidos en esta dirección. Sin embargo, no ha sido hasta hace unos pocos años que las instituciones y grandes compañías han comenzado a prestar verdadero interés en este campo. Parece que estamos a punto de experimentar un nuevo cambio en nuestra forma de vida, concretamente en la manera en la que interactuamos con nuestro hogar y las comodidades e información que este nos puede proporcionar. En esa corriente se desarrolla este Proyecto Fin de Grado, con el objetivo de aportar un nuevo enfoque a la manera de integrar los diferentes dispositivos del hogar digital con la inteligencia artificial y, lo que es más importante, al modo en el que el usuario interactúa con su vivienda. Más concretamente, se pretende desarrollar un sistema capaz de tomar decisiones acordes al contexto y a las preferencias del usuario. A través de la utilización de diferentes tecnologías se dotará al hogar digital de cierta autonomía a la hora de decidir qué acciones debe llevar a cabo sobre los dispositivos que contiene, todo ello mediante la interpretación de órdenes procedentes del usuario (expresadas de manera coloquial) y el estudio del contexto que envuelve al instante de ejecución. Para la interacción entre el usuario y el hogar digital se desarrollará una aplicación móvil mediante la cual podrá expresar (de manera conversacional) las órdenes que quiera dar al sistema, el cual intervendrá en la conversación y llevará a cabo las acciones oportunas. Para todo ello, el sistema hará principalmente uso de ontologías, análisis semántico, redes bayesianas, UPnP y Android. Se combinará información procedente del usuario, de los sensores y de fuentes externas para determinar, a través de las citadas tecnologías, cuál es la operación que debe realizarse para satisfacer las necesidades del usuario. En definitiva, el objetivo final de este proyecto es diseñar e implementar un sistema innovador que se salga de la corriente actual de interacción mediante botones, menús y formularios a los que estamos tan acostumbrados, y que permita al usuario, en cierto modo, hablar con su vivienda y expresarle sus necesidades, haciendo a la tecnología un poco más transparente y cercana y aproximándonos un poco más a ese concepto de hogar inteligente que imaginábamos a finales del siglo XX. ABSTRACT. Over the last decades the development of technology in very different areas has happened incredibly fast. Its propagation to all aspects of our daily activities seems to be inevitable and the electronic devices have invaded our homes. Nevertheless, home automation has not reached the integration point that it was supposed to just a few decades ago. It is true that some autonomic and relatively intelligent devices are emerging, but the digital home as a system able to control a large set of elements from a house (energy management, security, welfare, etc.) is not present yet in the average home. That lack of integration is not due to the absence of technology and, in fact, there are a lot of investigations and projects focused on this field. However, the institutions and big companies have not shown enough interest in home automation until just a few years ago. It seems that, finally, we are about to experiment another change in our lifestyle and how we interact with our home and the information and facilities it can provide. This Final Degree Project is developed as part of this trend, with the goal of providing a new approach to the way the system could integrate the home devices with the artificial intelligence and, mainly, to the way the user interacts with his house. More specifically, this project aims to develop a system able to make decisions, taking into account the context and the user preferences. Through the use of several technologies and approaches, the system will be able to decide which actions it should perform based on the order interpretation (expressed colloquially) and the context analysis. A mobile application will be developed to enable the user-home interaction. The user will be able to express his orders colloquially though out a conversational mode, and the system will also participate in the conversation, performing the required actions. For providing all this features, the system will mainly use ontologies, semantic analysis, Bayesian networks, UPnP and Android. Information from the user, the sensors and external sources will be combined to determine, through the use of these technologies, which is the operation that the system should perform to meet the needs of the user. In short, the final goal of this project is to design and implement an innovative system, away from the current trend of buttons, menus and forms. In a way, the user will be able to talk to his home and express his needs, experiencing a technology closer to the people and getting a little closer to that concept of digital home that we imagined in the late twentieth century.
Resumo:
La mejora continua de los procesos de fabricación es fundamental para alcanzar niveles óptimos de productividad, calidad y coste en la producción de componentes y productos. Para ello es necesario disponer de modelos que relacionen de forma precisa las variables que intervienen en el proceso de corte. Esta investigación tiene como objetivo determinar la influencia de la velocidad de corte y el avance en el desgaste del flanco de los insertos de carburos recubiertos GC1115 y GC2015 y en la rugosidad superficial de la pieza mecanizada de la pieza en el torneado de alta velocidad en seco del acero AISI 316L. Se utilizaron entre otros los métodos de observación científica, experimental, medición, inteligencia artificial y estadísticos. El inserto GC1115 consigue el mejor resultado de acuerdo al gráfico de medias y de las ecuaciones de regresión múltiple de desgaste del flanco para v= 350 m/min, mientras que para las restantes velocidades el inserto GC2015 consigue el mejor desempeño. El mejor comportamiento en cuanto a la rugosidad superficial de la pieza mecanizada se obtuvo con el inserto GC1115 en las velocidades de 350 m/min y 400 m/min, en la velocidad de 450 m/min el mejor resultado correspondió al inserto GC2015. Se analizaron dos criterios nuevos, el coeficiente de vida útil de la herramienta de corte en relación al volumen de metal cortado y el coeficiente de rugosidad superficial de la pieza mecanizada en relación al volumen de metal cortado. Fueron determinados los modelos de regresión múltiple que permitieron calcular el tiempo de mecanizado de los insertos sin que alcanzaran el límite del criterio de desgaste del flanco. Los modelos desarrollados fueron evaluados por sus capacidades de predicción con los valores medidos experimentalmente. ABSTRACT The continuous improvement of manufacturing processes is critical to achieving optimal levels of productivity, quality and cost in the production of components and products. This is necessary to have models that accurately relate the variables involved in the cutting process. This research aims to determine the influence of the cutting speed and feed on the flank wear of carbide inserts coated by GC1115 and GC2015 and the surface roughness of the workpiece for turning dry high speed steel AISI 316L. Among various scientific methods this study were used of observation, experiment, measurement, statistical and artificial intelligence. The GC1115 insert gets the best result according to the graph of means and multiple regression equations of flank wear for v = 350 m / min, while for the other speeds the GC2015 insert gets the best performance. Two approaches are discussed, the life ratio of the cutting tool relative to the cut volume and surface roughness coefficient in relation to the cut volume. Multiple regression models were determined to calculate the machining time of the inserts without reaching the limit of the criterion flank wear. The developed models were evaluated for their predictive capabilities with the experimentally measured values.
Resumo:
This paper describes a new technique referred to as watched subgraphs which improves the performance of BBMC, a leading state of the art exact maximum clique solver (MCP). It is based on watched literals employed by modern SAT solvers for boolean constraint propagation. In efficient SAT algorithms, a list of clauses is kept for each literal (it is said that the clauses watch the literal) so that only those in the list are checked for constraint propagation when a (watched) literal is assigned during search. BBMC encodes vertex sets as bit strings, a bit block representing a subset of vertices (and the corresponding induced subgraph) the size of the CPU register word. The paper proposes to watch two subgraphs of critical sets during MCP search to efficiently compute a number of basic operations. Reported results validate the approach as the size and density of problem instances rise, while achieving comparable performance in the general case.
Resumo:
La minería de datos es un campo de las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de datos. La minería de datos busca generar información similar a la que podría producir un experto humano. Además es el proceso de descubrir conocimientos interesantes, como patrones, asociaciones, cambios, anomalías y estructuras significativas a partir de grandes cantidades de datos almacenadas en bases de datos, data warehouses o cualquier otro medio de almacenamiento de información. El aprendizaje automático o aprendizaje de máquinas es una rama de la Inteligencia artificial cuyo objetivo es desarrollar técnicas que permitan a las computadoras aprender. De forma más concreta, se trata de crear programas capaces de generalizar comportamientos a partir de una información no estructurada suministrada en forma de ejemplos. La minería de datos utiliza métodos de aprendizaje automático para descubrir y enumerar patrones presentes en los datos. En los últimos años se han aplicado las técnicas de clasificación y aprendizaje automático en un número elevado de ámbitos como el sanitario, comercial o de seguridad. Un ejemplo muy actual es la detección de comportamientos y transacciones fraudulentas en bancos. Una aplicación de interés es el uso de las técnicas desarrolladas para la detección de comportamientos fraudulentos en la identificación de usuarios existentes en el interior de entornos inteligentes sin necesidad de realizar un proceso de autenticación. Para comprobar que estas técnicas son efectivas durante la fase de análisis de una determinada solución, es necesario crear una plataforma que de soporte al desarrollo, validación y evaluación de algoritmos de aprendizaje y clasificación en los entornos de aplicación bajo estudio. El proyecto planteado está definido para la creación de una plataforma que permita evaluar algoritmos de aprendizaje automático como mecanismos de identificación en espacios inteligentes. Se estudiarán tanto los algoritmos propios de este tipo de técnicas como las plataformas actuales existentes para definir un conjunto de requisitos específicos de la plataforma a desarrollar. Tras el análisis se desarrollará parcialmente la plataforma. Tras el desarrollo se validará con pruebas de concepto y finalmente se verificará en un entorno de investigación a definir. ABSTRACT. The data mining is a field of the sciences of the computation referred to the process that it tries to discover patterns in big volumes of information. The data mining seeks to generate information similar to the one that a human expert might produce. In addition it is the process of discovering interesting knowledge, as patterns, associations, changes, abnormalities and significant structures from big quantities of information stored in databases, data warehouses or any other way of storage of information. The machine learning is a branch of the artificial Intelligence which aim is to develop technologies that they allow the computers to learn. More specifically, it is a question of creating programs capable of generalizing behaviors from not structured information supplied in the form of examples. The data mining uses methods of machine learning to discover and to enumerate present patterns in the information. In the last years there have been applied classification and machine learning techniques in a high number of areas such as healthcare, commercial or security. A very current example is the detection of behaviors and fraudulent transactions in banks. An application of interest is the use of the techniques developed for the detection of fraudulent behaviors in the identification of existing Users inside intelligent environments without need to realize a process of authentication. To verify these techniques are effective during the phase of analysis of a certain solution, it is necessary to create a platform that support the development, validation and evaluation of algorithms of learning and classification in the environments of application under study. The project proposed is defined for the creation of a platform that allows evaluating algorithms of machine learning as mechanisms of identification in intelligent spaces. There will be studied both the own algorithms of this type of technologies and the current existing platforms to define a set of specific requirements of the platform to develop. After the analysis the platform will develop partially. After the development it will be validated by prove of concept and finally verified in an environment of investigation that would be define.