961 resultados para Antigen-Antibody Complex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

HLA-G is a nonclassical class I major histocompatibility complex molecule with a restricted pattern of expression that includes the placental extravillus cytotrophoblast cells in direct contact with maternal tissues. Circumstantial evidence suggests that HLA-G may play a role in protection of the semiallogeneic human fetus. We examined whether HLA-G is expressed during the critical period of preimplantation human development and whether expression of this molecule could be correlated with the cleavage rate of embryos. Using reverse transcription PCR on surplus human embryos and unfertilized oocytes from patients undergoing in vitro fertilization we detected HLA-G heavy chain mRNA in 40% of 148 of blastocysts tested. The presence of HLA-G mRNA was also detected in unfertilized oocytes and in early embryos, but not in control cumulus oophorus cells. beta 2-Microglobulin mRNA was also found in those embryos expressing HLA-G. In concordance with our mRNA data, a similar proportion of embryos stained positive for HLA-G utilizing a specific monoclonal antibody. Interestingly, expression of HLA-G mRNA was associated with an increased cleavage rate, as compared to embryos lacking HLA-G transcript. Thus, HLA-G could be a functional homologue of the mouse Qa-2 antigen, which has been implicated in differences in the rate of preimplantation embryo development. To our knowledge, the presence of HLA-G mRNA and protein in human preimplantation embryos and oocytes has not been reported previously. The correlation of HLA-G mRNA expression with cleavage rate suggests that this molecule may play an important role in human pre-embryo development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cholangiopathies are a group of hepatobiliary diseases in which intrahepatic bile duct epithelial cells, or cholangiocytes, are the target for a variety of destructive processes, including immune-mediated damage. We tested the hypothesis that cholangitis could be induced in rodents by immunization with highly purified cholangiocytes. Inbred Wistar rats were immunized with purified hyperplastic cholangiocytes isolated after bile duct ligation from either syngeneic Wistar or allogeneic Fischer 344 rats; control rats were immunized with bovine serum albumin (BSA) or hepatocytes. After immunization with cholangiocytes, recipient animals developed histologic evidence of nonsuppurative cholangitis without inflammation in other organs; groups immunized with BSA or hepatocytes showed no cholangitis. Immunohistochemical studies revealed that portal tract infiltrates around bile ducts consisted of CD3-positive lymphocytes, some of which expressed major histocompatibility complex class II antigen; B cells and exogenous monocytes/macrophages were essentially absent. Transfer of unfractionated ConA-stimulated spleen cells from cholangiocyte-immunized (but not BSA-immunized) rats into recipients also caused nonsuppurative cholangitis. Moreover, these splenocytes from cholangiocyte-immunized (but not BSA-immunized) rats were cytotoxic in vitro for cultured rodent cholangiocytes; no cytotoxicity was observed against a rat hepatocyte cell line. Also, a specific antibody response in sera of cholangiocyte-immunized rats was demonstrated by immunoblots against cholangiocyte proteins. Finally, cholangiograms in cholangiocyte-immunized rats showed distortion and tortuosity of the entire intrahepatic biliary ductal system. This unique rodent model of experimental cholangitis demonstrates the importance of immune mechanisms in the pathogenesis of cholangitis and will prove useful in exploring the mechanisms by which the immune system targets and damages cholangiocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In establishing the memory B-cell population and maintaining self-tolerance during an immune response, apoptosis mediates the removal of early, low-affinity antibody-forming cells, unselected germinal center (GC) cells, and, potentially, self-reactive B cells. To address the role of the apoptosis-signaling cell surface molecule FAS in the B-cell response to antigen, we have examined the T-cell-dependent B-cell response to the carrier-conjugated hapten (4-hydroxy-3-nitrophenyl)acetyl (NP) in lpr mice in which the fas gene is mutated. High levels of FAS were expressed on normal GC B cells but the absence of FAS did not perturb the progressive decline in numbers of either GC B cells or extrafollicular antibody-forming cells. Furthermore, the rate of formation and eventual size of the NP-specific memory B-cell population in lpr mice were normal. The accumulation of cells with affinity-enhancing mutations and the appearance of high-affinity anti-NP IgG1 antibody in the serum were also normal in lpr mice. Thus, although high levels of FAS are expressed on GC B cells, FAS is not required for GC selection or for regulation of the major antigen-specific B-cell compartments. The results suggest that the size and composition of B-cell compartments in the humoral immune response are regulated by mechanisms that do not require FAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell migration in the central nervous system depends, in part, on receptors and extracellular matrix molecules that likewise support axonal outgrowth. We have investigated the influence of T61, a monoclonal antibody that has been shown to inhibit growth cone motility in vitro, on neuronal migration in the developing optic tectum. Intraventricular injections of antibody-producing hybridoma cells or ascites fluid were used to determine the action of this antibody in an in vivo environment. To document alterations in tectal layer formation, a combination of cell-nuclei staining and axonal immunolabeling methods was employed. In the presence of T61 antibody, cells normally destined for superficial layers accumulated in the ventricular zone instead, leading to a reduction of the cell-dense layer in the tectal plate. Experiments with 5-bromo-2'-deoxyuridine labeling followed by antibody staining confirmed that the nonmigrating cells remaining in the ventricular zone were postmitotic and had differentiated. The structure of radial glial cells, as judged by staining with a glia-specific antibody and the fluorescent tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), remained intact in these embryos. Our findings suggest that the T61 epitope is involved in a mechanism underlying axonal extension and neuronal migration, possibly by influencing the motility of the leading process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii), a membrane glycoprotein, binds class II major histocompatibility complex (MHC) glycoproteins, probably via its class II-associated Ii peptide (CLIP) segment, and escorts them toward antigen-containing endosomal compartments. We find that a soluble, trimeric ectodomain of Ii expressed and purified from Escherichia coli blocks peptide binding to soluble HLA-DR1. Proteolysis indicates that Ii contains two structural domains. The C-terminal two-thirds forms an alpha-helical domain that trimerizes and interacts with empty HLA-DR1 molecules, augmenting rather than blocking peptide binding. The N-terminal one-third, which inhibits peptide binding, is proteolytically susceptible over its entire length. In the trimer, the N-terminal domains act independently with each CLIP segment exposed and free to bind an MHC class II molecule, while the C-terminal domains act as a trimeric unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Administration of virus-specific antibodies is known to be an effective early treatment for some viral infections. Such immunotherapy probably acts by antibody-mediated neutralization of viral infectivity and is often thought to function independently of T-cell-mediated immune responses. In the present experiments, we studied passive antibody therapy using Friend murine leukemia virus complex as a model for an immunosuppressive retroviral disease in adult mice. The results showed that antibody therapy could induce recovery from a well-established retroviral infection. However, the success of therapy was dependent on the presence of both CD4+ and CD8+ T lymphocytes. Thus, cell-mediated responses were required for recovery from infection even in the presence of therapeutic levels of antibody. The major histocompatibility type of the mice was also an important factor determining the relative success of antibody therapy in this system, but it was less critical for low-dose than for high-dose infections. Our results imply that limited T-cell responsiveness as dictated by major histocompatibility genes and/or stage of disease may have contributed to previous immunotherapy failures in AIDS patients. Possible strategies to improve the efficacy of future therapies are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of CD8+ cytotoxic T lymphocytes (CTLs) is desirable for immunization against many diseases, and recombinant-synthetic peptide antigens are now favored agents to use. However, a major problem is how to induce CTLs, which requires a T1-type response to such synthetic antigens. We report that T1-type (generating high CTL, low antibody) or T2-type (the reciprocal) responses can be induced by conjugation of the antigen to the carbohydrate polymer mannan: T1 responses are selected by using oxidizing conditions; T2 responses are selected by using reducing conditions for the conjugation. Using human MUC1 as a model antigen in mice, immunization with oxidized mannan-MUC1 fusion protein (ox-M-FP) led to complete tumor protection (challenge up to 5 x 10(7) MUC1+ tumor cells), CTLs, and a high CTL precursor (CTLp) frequency (1/6900), whereas immunization with reduced mannan-MUC1 FP (red-M-FP) led to poor protection after challenge with only 10(6) MUC1+ tumor cells, no CTLs, and a low CTLp frequency (1/87,800). Ox-M-FP selects for a T1 response (mediated here by CD8+ cells) with high interferon gamma (IFN-gamma) secretion, no interleukin 4 (IL-4), and a predominant IgG2a antibody response; red-M-FP selects for a T2-type response with IL-4 production and a high predominant IgG1 antibody response but no IFN-gamma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The majority of translocations involving BCL2 are very narrowly targeted to three breakpoint clusters evenly spaced over a 100-bp region of the gene's terminal exon. We have recently shown that the immediate upstream boundary of this major breakpoint region (mbr) is a specific recognition site for single-strand DNA (ssDNA) binding proteins on the sense and antisense strands. The downstream flank of the mbr is a helicase binding site. In this report we demonstrate that the helicase and ssDNA binding proteins show reciprocal changes in binding activity over the cell cycle. The helicase is maximally active in G1 and early S phases; the ssDNA binding proteins are maximally active in late S and G2/M phases. An inhibitor of helicase binding appears in late S and G2/M. Finally, at least one component of the helicase binding complex is the Ku antigen. Thus, a protein with helicase activity implicated in repair of double-strand breaks, variable (diversity) joining recombination, and, potentially, cell-cycle regulation is targeted to the BCL2 mbr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brain amyloid of Alzheimer disease (AD) may potentially be imaged in patients with AD by using neuroimaging technology and a radiolabeled form of the 40-residue beta-amyloid peptide A beta 1-40 that is enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. Transport of 125I-labeled A beta 1-40 (125I-A beta 1-40) through the BBB was found to be negligible by experiments with both an intravenous injection technique and an internal carotid artery perfusion method in anesthetized rats. In addition, 125I-A beta 1-40 was rapidly metabolized after either intravenous injection or internal carotid artery perfusion. BBB transport was increased and peripheral metabolism was decreased by conjugation of monobiotinylated 125I-A beta 1-40 to a vector-mediated drug delivery system, which consisted of a conjugate of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the BBB. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the 125I,bio-A beta 1-40/SA-OX26 conjugate was 0.15 +/- 0.01, a level that is 2-fold greater than the brain uptake of morphine. The binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was demonstrated by both film and emulsion autoradiography performed on frozen sections of AD brain. Binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was completely inhibited by high concentrations of unlabeled A beta 1-40. In conclusion, these studies show that BBB transport and access to amyloid within brain may be achieved by conjugation of A beta 1-40 to a vector-mediated BBB drug delivery system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii) is an intracellular type II transmembrane glycoprotein that is associated with major histocompatibility complex class II molecules during biosynthesis. Ii exists in two alternatively spliced forms, p31 and p41. Both p31 and p41 facilitate folding of class II molecules, promote egress from the endoplasmic reticulum, prevent premature peptide binding, and enhance localization to proteolytic endosomal compartments that are thought to be the sites for Ii degradation, antigen processing, and class II-peptide association. In spite of the dramatic and apparently equivalent effects that p31 and p41 have on class II biosynthesis, the ability of invariant chain to enhance antigen presentation to T cells is mostly restricted to p41. Here we show that degradation of Ii leads to the generation of a 12-kDa amino-terminal fragment that in p41-positive, but not in p31-positive, cells remains associated with class II molecules for an extended time. Interestingly, we find that coexpression of the two isoforms results in a change in the pattern of p31 degradation such that endosomal processing of p31 also leads to extended association of a similar 12-kDa fragment with class II molecules. These data raise the possibility that p41 may have the ability to impart its pattern of proteolytic processing on p31 molecules expressed in the same cells. This would enable a small number of p41 molecules to modify the post-translational transport and/or processing of an entire cohort of class II-Ii complexes in a manner that could account for the unique ability of p41 to enhance antigen presentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential activation of CD4+ T-cell precursors in vivo leads to the development of effectors with unique patterns of lymphokine secretion. To investigate whether the differential pattern of lymphokine secretion is influenced by factors associated with either the display and/or recognition of the ligand, we have used a set of ligands with various class II binding affinities but unchanged T-cell specificity. The ligand that exhibited approximately 10,000-fold higher binding to I-Au considerably increased the frequency of interferon gamma-producing but not interleukin (IL) 4- or IL-5-secreting cells in vivo. Using an established ligand-specific, CD4+ T-cell clone secreting only IL-4, we also demonstrated that stimulation with the highest affinity ligand resulted in interferon gamma production in vitro. In contrast, ligands that demonstrated relatively lower class II binding induced only IL-4 secretion. These data suggest that the major histocompatibility complex binding affinity of antigenic determinants, leading to differential interactions at the T cell-antigen-presenting cell interface, can be crucial for the differential development of cytokine patterns in T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined treatment with allogeneic small lymphocytes or T-depleted small lymphocytes plus a blocking antibody to CD40 ligand (CD40L) permitted indefinite pancreatic islet allograft survival in 37 of 40 recipients that differed from islet donors at major and minor histocompatibility loci. The effect of the allogeneic small lymphocytes was donor antigen-specific. Neither treatment alone was as effective as combined treatment, although anti-CD40L by itself allowed indefinite islet allograft survival in 40% of recipients. Our interpretation is that small lymphocytes expressing donor antigens in the absence of appropriate costimulatory signals are tolerogenic for alloreactive host cells. Anti-CD40L antibody may prevent host T cells from inducing costimulatory signals in donor lymphocytes or islet grafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invariant chain (Ii) is a trimeric membrane protein which binds and stabilizes major histocompatibility complex class II heterodimers in the endoplasmic reticulum and lysosomal compartments of antigen-presenting cells. In concert with an intracellular class II-like molecule, HLA-DM, Ii seems to facilitate loading of conventional class II molecules with peptides before transport of the class II-peptide complex to the cell surface for recognition by T cells. The interaction of Ii with class II molecules is thought to be mediated in large part through a region of 24 amino acids (the class II-associated Ii peptide, CLIP) which binds as a cleaved moiety in the antigenic peptide-binding groove of class II molecules in HLA-DM-deficient cell lines. Here we use nuclear magnetic resonance techniques to demonstrate that a soluble recombinant Ii ectodomain contains significant disordered regions which probably include CLIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Murine suppressor T-cell hybridoma cells (231F1) secrete not only bioactive glycosylation-inhibiting factor (GIF) but also an inactive peptide comparable to bioactive GIF peptide in its molecular size and reactivity with anti-GIF; the amino acid sequence of the inactive peptide is identical to that of the bioactive homologue. The inactive GIF peptide in culture supernatant of both the 231F1 cells and a stable transfectant of human GIF cDNA in the murine suppressor T hybridoma selectively bound to Affi-Gel 10, whereas bioactive GIF peptides from the same sources failed to bind to the gel. The inactive cytosolic human GIF from the stable transfectant and Escherichia coli-derived recombinant human GIF also had affinity for Affi-Gel 10. Both the bioactive murine GIF peptide from the suppressor T hybridoma and bioactive recombinant human GIF from the stable transfectant bound to the anti-I-J monoclonal antibody H6 coupled to Affi-Gel. However, bioactive hGIF produced by a stable transfectant of human GIF cDNA in BMT10 cells failed to be retained in H6-coupled Affi-Gel. These results indicate that the I-J specificity is determined by the cell source of the GIF peptide and that the I-J determinant recognized by monoclonal antibody H6 does not represent a part of the primary amino acid sequence of GIF. It appears that the epitope is generated by a posttranslational modification of the peptide.