930 resultados para Analysis tools


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Pharmacovigilance methods have advanced greatly during the last decades, making post-market drug assessment an essential drug evaluation component. These methods mainly rely on the use of spontaneous reporting systems and health information databases to collect expertise from huge amounts of real-world reports. The EU-ADR Web Platform was built to further facilitate accessing, monitoring and exploring these data, enabling an in-depth analysis of adverse drug reactions risks.METHODS: The EU-ADR Web Platform exploits the wealth of data collected within a large-scale European initiative, the EU-ADR project. Millions of electronic health records, provided by national health agencies, are mined for specific drug events, which are correlated with literature, protein and pathway data, resulting in a rich drug-event dataset. Next, advanced distributed computing methods are tailored to coordinate the execution of data-mining and statistical analysis tasks. This permits obtaining a ranked drug-event list, removing spurious entries and highlighting relationships with high risk potential.RESULTS: The EU-ADR Web Platform is an open workspace for the integrated analysis of pharmacovigilance datasets. Using this software, researchers can access a variety of tools provided by distinct partners in a single centralized environment. Besides performing standalone drug-event assessments, they can also control the pipeline for an improved batch analysis of custom datasets. Drug-event pairs can be substantiated and statistically analysed within the platform's innovative working environment.CONCLUSIONS: A pioneering workspace that helps in explaining the biological path of adverse drug reactions was developed within the EU-ADR project consortium. This tool, targeted at the pharmacovigilance community, is available online at https://bioinformatics.ua.pt/euadr/. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soluble MHC-peptide complexes, commonly known as tetramers, allow the detection and isolation of antigen-specific T cells. Although other types of soluble MHC-peptide complexes have been introduced, the most commonly used MHC class I staining reagents are those originally described by Altman and Davis. As these reagents have become an essential tool for T cell analysis, it is important to have a large repertoire of such reagents to cover a broad range of applications in cancer research and clinical trials. Our tetramer collection currently comprises 228 human and 60 mouse tetramers and new reagents are continuously being added. For the MHC II tetramers, the list currently contains 21 human (HLA-DR, DQ and DP) and 5 mouse (I-A(b)) tetramers. Quantitative enumeration of antigen-specific T cells by tetramer staining, especially at low frequencies, critically depends on the quality of the tetramers and on the staining procedures. For conclusive longitudinal monitoring, standardized reagents and analysis protocols need to be used. This is especially true for the monitoring of antigen-specific CD4+ T cells, as there are large variations in the quality of MHC II tetramers and staining conditions. This commentary provides an overview of our tetramer collection and indications on how tetramers should be used to obtain optimal results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractAlthough the genomes from any two human individuals are more than 99.99% identical at the sequence level, some structural variation can be observed. Differences between genomes include single nucleotide polymorphism (SNP), inversion and copy number changes (gain or loss of DNA). The latter can range from submicroscopic events (CNVs, at least 1kb in size) to complete chromosomal aneuploidies. Small copy number variations have often no (lethal) consequences to the cell, but a few were associated to disease susceptibility and phenotypic variations. Larger re-arrangements (i.e. complete chromosome gain) are frequently associated with more severe consequences on health such as genomic disorders and cancer. High-throughput technologies like DNA microarrays enable the detection of CNVs in a genome-wide fashion. Since the initial catalogue of CNVs in the human genome in 2006, there has been tremendous interest in CNVs both in the context of population and medical genetics. Understanding CNV patterns within and between human populations is essential to elucidate their possible contribution to disease. But genome analysis is a challenging task; the technology evolves rapidly creating needs for novel, efficient and robust analytical tools which need to be compared with existing ones. Also, while the link between CNV and disease has been established, the relative CNV contribution is not fully understood and the predisposition to disease from CNVs of the general population has not been yet investigated.During my PhD thesis, I worked on several aspects related to CNVs. As l will report in chapter 3, ! was interested in computational methods to detect CNVs from the general population. I had access to the CoLaus dataset, a population-based study with more than 6,000 participants from the Lausanne area. All these individuals were analysed on SNP arrays and extensive clinical information were available. My work explored existing CNV detection methods and I developed a variety of metrics to compare their performance. Since these methods were not producing entirely satisfactory results, I implemented my own method which outperformed two existing methods. I also devised strategies to combine CNVs from different individuals into CNV regions.I was also interested in the clinical impact of CNVs in common disease (chapter 4). Through an international collaboration led by the Centre Hospitalier Universitaire Vaudois (CHUV) and the Imperial College London I was involved as a main data analyst in the investigation of a rare deletion at chromosome 16p11 detected in obese patients. Specifically, we compared 8,456 obese patients and 11,856 individuals from the general population and we found that the deletion was accounting for 0.7% of the morbid obesity cases and was absent in healthy non- obese controls. This highlights the importance of rare variants with strong impact and provides new insights in the design of clinical studies to identify the missing heritability in common disease.Furthermore, I was interested in the detection of somatic copy number alterations (SCNA) and their consequences in cancer (chapter 5). This project was a collaboration initiated by the Ludwig Institute for Cancer Research and involved other groups from the Swiss Institute of Bioinformatics, the CHUV and Universities of Lausanne and Geneva. The focus of my work was to identify genes with altered expression levels within somatic copy number alterations (SCNA) in seven metastatic melanoma ceil lines, using CGH and SNP arrays, RNA-seq, and karyotyping. Very few SCNA genes were shared by even two melanoma samples making it difficult to draw any conclusions at the individual gene level. To overcome this limitation, I used a network-guided analysis to determine whether any pathways, defined by amplified or deleted genes, were common among the samples. Six of the melanoma samples were potentially altered in four pathways and five samples harboured copy-number and expression changes in components of six pathways. In total, this approach identified 28 pathways. Validation with two external, large melanoma datasets confirmed all but three of the detected pathways and demonstrated the utility of network-guided approaches for both large and small datasets analysis.RésuméBien que le génome de deux individus soit similaire à plus de 99.99%, des différences de structure peuvent être observées. Ces différences incluent les polymorphismes simples de nucléotides, les inversions et les changements en nombre de copies (gain ou perte d'ADN). Ces derniers varient de petits événements dits sous-microscopiques (moins de 1kb en taille), appelés CNVs (copy number variants) jusqu'à des événements plus large pouvant affecter des chromosomes entiers. Les petites variations sont généralement sans conséquence pour la cellule, toutefois certaines ont été impliquées dans la prédisposition à certaines maladies, et à des variations phénotypiques dans la population générale. Les réarrangements plus grands (par exemple, une copie additionnelle d'un chromosome appelée communément trisomie) ont des répercutions plus grave pour la santé, comme par exemple dans certains syndromes génomiques et dans le cancer. Les technologies à haut-débit telle les puces à ADN permettent la détection de CNVs à l'échelle du génome humain. La cartographie en 2006 des CNV du génome humain, a suscité un fort intérêt en génétique des populations et en génétique médicale. La détection de différences au sein et entre plusieurs populations est un élément clef pour élucider la contribution possible des CNVs dans les maladies. Toutefois l'analyse du génome reste une tâche difficile, la technologie évolue très rapidement créant de nouveaux besoins pour le développement d'outils, l'amélioration des précédents, et la comparaison des différentes méthodes. De plus, si le lien entre CNV et maladie a été établit, leur contribution précise n'est pas encore comprise. De même que les études sur la prédisposition aux maladies par des CNVs détectés dans la population générale n'ont pas encore été réalisées.Pendant mon doctorat, je me suis concentré sur trois axes principaux ayant attrait aux CNV. Dans le chapitre 3, je détaille mes travaux sur les méthodes d'analyses des puces à ADN. J'ai eu accès aux données du projet CoLaus, une étude de la population de Lausanne. Dans cette étude, le génome de plus de 6000 individus a été analysé avec des puces SNP et de nombreuses informations cliniques ont été récoltées. Pendant mes travaux, j'ai utilisé et comparé plusieurs méthodes de détection des CNVs. Les résultats n'étant pas complètement satisfaisant, j'ai implémenté ma propre méthode qui donne de meilleures performances que deux des trois autres méthodes utilisées. Je me suis aussi intéressé aux stratégies pour combiner les CNVs de différents individus en régions.Je me suis aussi intéressé à l'impact clinique des CNVs dans le cas des maladies génétiques communes (chapitre 4). Ce projet fut possible grâce à une étroite collaboration avec le Centre Hospitalier Universitaire Vaudois (CHUV) et l'Impérial College à Londres. Dans ce projet, j'ai été l'un des analystes principaux et j'ai travaillé sur l'impact clinique d'une délétion rare du chromosome 16p11 présente chez des patients atteints d'obésité. Dans cette collaboration multidisciplinaire, nous avons comparés 8'456 patients atteint d'obésité et 11 '856 individus de la population générale. Nous avons trouvés que la délétion était impliquée dans 0.7% des cas d'obésité morbide et était absente chez les contrôles sains (non-atteint d'obésité). Notre étude illustre l'importance des CNVs rares qui peuvent avoir un impact clinique très important. De plus, ceci permet d'envisager une alternative aux études d'associations pour améliorer notre compréhension de l'étiologie des maladies génétiques communes.Egalement, j'ai travaillé sur la détection d'altérations somatiques en nombres de copies (SCNA) et de leurs conséquences pour le cancer (chapitre 5). Ce projet fut une collaboration initiée par l'Institut Ludwig de Recherche contre le Cancer et impliquant l'Institut Suisse de Bioinformatique, le CHUV et les Universités de Lausanne et Genève. Je me suis concentré sur l'identification de gènes affectés par des SCNAs et avec une sur- ou sous-expression dans des lignées cellulaires dérivées de mélanomes métastatiques. Les données utilisées ont été générées par des puces ADN (CGH et SNP) et du séquençage à haut débit du transcriptome. Mes recherches ont montrées que peu de gènes sont récurrents entre les mélanomes, ce qui rend difficile l'interprétation des résultats. Pour contourner ces limitations, j'ai utilisé une analyse de réseaux pour définir si des réseaux de signalisations enrichis en gènes amplifiés ou perdus, étaient communs aux différents échantillons. En fait, parmi les 28 réseaux détectés, quatre réseaux sont potentiellement dérégulés chez six mélanomes, et six réseaux supplémentaires sont affectés chez cinq mélanomes. La validation de ces résultats avec deux larges jeux de données publiques, a confirmée tous ces réseaux sauf trois. Ceci démontre l'utilité de cette approche pour l'analyse de petits et de larges jeux de données.Résumé grand publicL'avènement de la biologie moléculaire, en particulier ces dix dernières années, a révolutionné la recherche en génétique médicale. Grâce à la disponibilité du génome humain de référence dès 2001, de nouvelles technologies telles que les puces à ADN sont apparues et ont permis d'étudier le génome dans son ensemble avec une résolution dite sous-microscopique jusque-là impossible par les techniques traditionnelles de cytogénétique. Un des exemples les plus importants est l'étude des variations structurales du génome, en particulier l'étude du nombre de copies des gènes. Il était établi dès 1959 avec l'identification de la trisomie 21 par le professeur Jérôme Lejeune que le gain d'un chromosome supplémentaire était à l'origine de syndrome génétique avec des répercussions graves pour la santé du patient. Ces observations ont également été réalisées en oncologie sur les cellules cancéreuses qui accumulent fréquemment des aberrations en nombre de copies (telles que la perte ou le gain d'un ou plusieurs chromosomes). Dès 2004, plusieurs groupes de recherches ont répertorié des changements en nombre de copies dans des individus provenant de la population générale (c'est-à-dire sans symptômes cliniques visibles). En 2006, le Dr. Richard Redon a établi la première carte de variation en nombre de copies dans la population générale. Ces découvertes ont démontrées que les variations dans le génome était fréquentes et que la plupart d'entre elles étaient bénignes, c'est-à-dire sans conséquence clinique pour la santé de l'individu. Ceci a suscité un très grand intérêt pour comprendre les variations naturelles entre individus mais aussi pour mieux appréhender la prédisposition génétique à certaines maladies.Lors de ma thèse, j'ai développé de nouveaux outils informatiques pour l'analyse de puces à ADN dans le but de cartographier ces variations à l'échelle génomique. J'ai utilisé ces outils pour établir les variations dans la population suisse et je me suis consacré par la suite à l'étude de facteurs pouvant expliquer la prédisposition aux maladies telles que l'obésité. Cette étude en collaboration avec le Centre Hospitalier Universitaire Vaudois a permis l'identification d'une délétion sur le chromosome 16 expliquant 0.7% des cas d'obésité morbide. Cette étude a plusieurs répercussions. Tout d'abord elle permet d'effectuer le diagnostique chez les enfants à naître afin de déterminer leur prédisposition à l'obésité. Ensuite ce locus implique une vingtaine de gènes. Ceci permet de formuler de nouvelles hypothèses de travail et d'orienter la recherche afin d'améliorer notre compréhension de la maladie et l'espoir de découvrir un nouveau traitement Enfin notre étude fournit une alternative aux études d'association génétique qui n'ont eu jusqu'à présent qu'un succès mitigé.Dans la dernière partie de ma thèse, je me suis intéressé à l'analyse des aberrations en nombre de copies dans le cancer. Mon choix s'est porté sur l'étude de mélanomes, impliqués dans le cancer de la peau. Le mélanome est une tumeur très agressive, elle est responsable de 80% des décès des cancers de la peau et est souvent résistante aux traitements utilisés en oncologie (chimiothérapie, radiothérapie). Dans le cadre d'une collaboration entre l'Institut Ludwig de Recherche contre le Cancer, l'Institut Suisse de Bioinformatique, le CHUV et les universités de Lausanne et Genève, nous avons séquencés l'exome (les gènes) et le transcriptome (l'expression des gènes) de sept mélanomes métastatiques, effectués des analyses du nombre de copies par des puces à ADN et des caryotypes. Mes travaux ont permis le développement de nouvelles méthodes d'analyses adaptées au cancer, d'établir la liste des réseaux de signalisation cellulaire affectés de façon récurrente chez le mélanome et d'identifier deux cibles thérapeutiques potentielles jusqu'alors ignorées dans les cancers de la peau.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines a dataset that derives from an observational tracking, in order to analyze where and how middle-class working families spend time at home. We use an ethnographic approach to study the everyday lives of Italian dual-income middle-class families, with the aim to analyze quantitatively the use of home spaces and the types of activities of family members on weekday afternoons and evenings. The different analyses (multiple correspondence analysis, agglomerative hierarchical cluster, discriminant analysis) show how particular spaces and activities in these spaces are dominated by certain family members. We suggest a combination of qualitative and quantitative methodologies as useful tools to explore in detail the everyday lives of families, and to understand how family members use the domestic spaces. In particular, we consider relevant the use of quantitative analyses to examine ethnographic data, especially in connection with the methodological reflexivity among researchers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: The kidney plays an essential role in maintaining sodium and water balance, thereby controlling the volume and osmolarity of the extracellular body fluids, the blood volume and the blood pressure. The final adjustment of sodium and water reabsorption in the kidney takes place in cells of the distal part of the nephron in which a set of apical and basolateral transporters participate in vectorial sodium and water transport from the tubular lumen to the interstitium and, finally, to the general circulation. According to a current model, the activity and/or cell-surface expression of these transporters is/are under the control of a gene network composed of the hormonally regulated, as well as constitutively expressed, genes. It is proposed that this gene network may include new candidate genes for salt- and water-losing syndromes and for salt-sensitive hypertension. A new generation of functional genomics techniques have recently been applied to the characterization of this gene network. The purpose of this review is to summarize these studies and to discuss the potential of the different techniques for characterization of the renal transcriptome. RECENT FINDINGS: Recently, DNA microarrays and serial analysis of gene expression have been applied to characterize the kidney transcriptome in different in-vivo and in-vitro models. In these studies, a set of new interesting genes potentially involved in the regulation of sodium and water reabsorption by the kidney have been identified and are currently under detailed investigation. SUMMARY: Characterization of the kidney transcriptome is greatly expanding our knowledge of the gene networks involved in multiple kidney functions, including the maintenance of sodium and water homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les plantes sont essentielles pour les sociétés humaines. Notre alimentation quotidienne, les matériaux de constructions et les sources énergétiques dérivent de la biomasse végétale. En revanche, la compréhension des multiples aspects développementaux des plantes est encore peu exploitée et représente un sujet de recherche majeur pour la science. L'émergence des technologies à haut débit pour le séquençage de génome à grande échelle ou l'imagerie de haute résolution permet à présent de produire des quantités énormes d'information. L'analyse informatique est une façon d'intégrer ces données et de réduire la complexité apparente vers une échelle d'abstraction appropriée, dont la finalité est de fournir des perspectives de recherches ciblées. Ceci représente la raison première de cette thèse. En d'autres termes, nous appliquons des méthodes descriptives et prédictives combinées à des simulations numériques afin d'apporter des solutions originales à des problèmes relatifs à la morphogénèse à l'échelle de la cellule et de l'organe. Nous nous sommes fixés parmi les objectifs principaux de cette thèse d'élucider de quelle manière l'interaction croisée des phytohormones auxine et brassinosteroïdes (BRs) détermine la croissance de la cellule dans la racine du méristème apical d'Arabidopsis thaliana, l'organisme modèle de référence pour les études moléculaires en plantes. Pour reconstruire le réseau de signalement cellulaire, nous avons extrait de la littérature les informations pertinentes concernant les relations entre les protéines impliquées dans la transduction des signaux hormonaux. Le réseau a ensuite été modélisé en utilisant un formalisme logique et qualitatif pour pallier l'absence de données quantitatives. Tout d'abord, Les résultats ont permis de confirmer que l'auxine et les BRs agissent en synergie pour contrôler la croissance de la cellule, puis, d'expliquer des observations phénotypiques paradoxales et au final, de mettre à jour une interaction clef entre deux protéines dans la maintenance du méristème de la racine. Une étude ultérieure chez la plante modèle Brachypodium dystachion (Brachypo- dium) a révélé l'ajustement du réseau d'interaction croisée entre auxine et éthylène par rapport à Arabidopsis. Chez ce dernier, interférer avec la biosynthèse de l'auxine mène à la formation d'une racine courte. Néanmoins, nous avons isolé chez Brachypodium un mutant hypomorphique dans la biosynthèse de l'auxine qui affiche une racine plus longue. Nous avons alors conduit une analyse morphométrique qui a confirmé que des cellules plus anisotropique (plus fines et longues) sont à l'origine de ce phénotype racinaire. Des analyses plus approfondies ont démontré que la différence phénotypique entre Brachypodium et Arabidopsis s'explique par une inversion de la fonction régulatrice dans la relation entre le réseau de signalisation par l'éthylène et la biosynthèse de l'auxine. L'analyse morphométrique utilisée dans l'étude précédente exploite le pipeline de traitement d'image de notre méthode d'histologie quantitative. Pendant la croissance secondaire, la symétrie bilatérale de l'hypocotyle est remplacée par une symétrie radiale et une organisation concentrique des tissus constitutifs. Ces tissus sont initialement composés d'une douzaine de cellules mais peuvent aisément atteindre des dizaines de milliers dans les derniers stades du développement. Cette échelle dépasse largement le seuil d'investigation par les moyens dits 'traditionnels' comme l'imagerie directe de tissus en profondeur. L'étude de ce système pendant cette phase de développement ne peut se faire qu'en réalisant des coupes fines de l'organe, ce qui empêche une compréhension des phénomènes cellulaires dynamiques sous-jacents. Nous y avons remédié en proposant une stratégie originale nommée, histologie quantitative. De fait, nous avons extrait l'information contenue dans des images de très haute résolution de sections transverses d'hypocotyles en utilisant un pipeline d'analyse et de segmentation d'image à grande échelle. Nous l'avons ensuite combiné avec un algorithme de reconnaissance automatique des cellules. Cet outil nous a permis de réaliser une description quantitative de la progression de la croissance secondaire révélant des schémas développementales non-apparents avec une inspection visuelle classique. La formation de pôle de phloèmes en structure répétée et espacée entre eux d'une longueur constante illustre les bénéfices de notre approche. Par ailleurs, l'exploitation approfondie de ces résultats a montré un changement de croissance anisotropique des cellules du cambium et du phloème qui semble en phase avec l'expansion du xylème. Combinant des outils génétiques et de la modélisation biomécanique, nous avons démontré que seule la croissance plus rapide des tissus internes peut produire une réorientation de l'axe de croissance anisotropique des tissus périphériques. Cette prédiction a été confirmée par le calcul du ratio des taux de croissance du xylème et du phloème au cours de développement secondaire ; des ratios élevés sont effectivement observés et concomitant à l'établissement progressif et tangentiel du cambium. Ces résultats suggèrent un mécanisme d'auto-organisation établi par un gradient de division méristématique qui génèrent une distribution de contraintes mécaniques. Ceci réoriente la croissance anisotropique des tissus périphériques pour supporter la croissance secondaire. - Plants are essential for human society, because our daily food, construction materials and sustainable energy are derived from plant biomass. Yet, despite this importance, the multiple developmental aspects of plants are still poorly understood and represent a major challenge for science. With the emergence of high throughput devices for genome sequencing and high-resolution imaging, data has never been so easy to collect, generating huge amounts of information. Computational analysis is one way to integrate those data and to decrease the apparent complexity towards an appropriate scale of abstraction with the aim to eventually provide new answers and direct further research perspectives. This is the motivation behind this thesis work, i.e. the application of descriptive and predictive analytics combined with computational modeling to answer problems that revolve around morphogenesis at the subcellular and organ scale. One of the goals of this thesis is to elucidate how the auxin-brassinosteroid phytohormone interaction determines the cell growth in the root apical meristem of Arabidopsis thaliana (Arabidopsis), the plant model of reference for molecular studies. The pertinent information about signaling protein relationships was obtained through the literature to reconstruct the entire hormonal crosstalk. Due to a lack of quantitative information, we employed a qualitative modeling formalism. This work permitted to confirm the synergistic effect of the hormonal crosstalk on cell elongation, to explain some of our paradoxical mutant phenotypes and to predict a novel interaction between the BREVIS RADIX (BRX) protein and the transcription factor MONOPTEROS (MP),which turned out to be critical for the maintenance of the root meristem. On the same subcellular scale, another study in the monocot model Brachypodium dystachion (Brachypodium) revealed an alternative wiring of auxin-ethylene crosstalk as compared to Arabidopsis. In the latter, increasing interference with auxin biosynthesis results in progressively shorter roots. By contrast, a hypomorphic Brachypodium mutant isolated in this study in an enzyme of the auxin biosynthesis pathway displayed a dramatically longer seminal root. Our morphometric analysis confirmed that more anisotropic cells (thinner and longer) are principally responsible for the mutant root phenotype. Further characterization pointed towards an inverted regulatory logic in the relation between ethylene signaling and auxin biosynthesis in Brachypodium as compared to Arabidopsis, which explains the phenotypic discrepancy. Finally, the morphometric analysis of hypocotyl secondary growth that we applied in this study was performed with the image-processing pipeline of our quantitative histology method. During its secondary growth, the hypocotyl reorganizes its primary bilateral symmetry to a radial symmetry of highly specialized tissues comprising several thousand cells, starting with a few dozens. However, such a scale only permits observations in thin cross-sections, severely hampering a comprehensive analysis of the morphodynamics involved. Our quantitative histology strategy overcomes this limitation. We acquired hypocotyl cross-sections from tiled high-resolution images and extracted their information content using custom high-throughput image processing and segmentation. Coupled with an automated cell type recognition algorithm, it allows precise quantitative characterization of vascular development and reveals developmental patterns that were not evident from visual inspection, for example the steady interspace distance of the phloem poles. Further analyses indicated a change in growth anisotropy of cambial and phloem cells, which appeared in phase with the expansion of xylem. Combining genetic tools and computational modeling, we showed that the reorientation of growth anisotropy axis of peripheral tissue layers only occurs when the growth rate of central tissue is higher than the peripheral one. This was confirmed by the calculation of the ratio of the growth rate xylem to phloem throughout secondary growth. High ratios are indeed observed and concomitant with the homogenization of cambium anisotropy. These results suggest a self-organization mechanism, promoted by a gradient of division in the cambium that generates a pattern of mechanical constraints. This, in turn, reorients the growth anisotropy of peripheral tissues to sustain the secondary growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Quantitative ultrasound (QUS) is an attractive method for assessing fracture risk because it is portable, inexpensive, without ionizing radiation, and available in areas of the world where DXA is not readily accessible or affordable. However, the diversity of QUS scanners and variability of fracture outcomes measured in different studies is an important obstacle to widespread utilisation of QUS for fracture risk assessment. We aimed in this review to assess the predictive power of heel QUS for fractures considering different characteristics of the association (QUS parameters and fracture outcomes measured, QUS devices, study populations, and independence from DXA-measured bone density).Materials/Methods : We conducted an inverse-variance randomeffects meta-analysis of prospective studies with heel QUS measures at baseline and fracture outcomes in their follow-up. Relative risks (RR) per standard deviation (SD) of different QUS parameters (broadband ultrasound attenuation [BUA], speed of sound &SOS;, stiffness index &SI;, and quantitative ultrasound index [QUI]) for various fracture outcomes (hip, vertebral, any clinical, any osteoporotic, and major osteoporotic fractures) were reported based on study questions.Results : 21 studies including 55,164 women and 13,742 men were included with a total follow-up of 279,124 person-years. All four QUS parameters were associated with risk of different fractures. For instance, RR of hip fracture for 1 SD decrease of BUA was 1.69 (95% CI 1.43-2.00), SOS was 1.96 (95% CI 1.64-2.34), SI was 2.26 (95%CI 1.71-2.99), and QUI was 1.99 (95% CI 1.49-2.67). Validated devices from different manufacturers predicted fracture risks with a similar performance (meta-regression p-values>0.05 for difference of devices). There was no sign of publication bias among the studies. QUS measures predicted fracture with a similar performance in men and women. Meta-analysis of studies with QUS measures adjusted for hip DXA showed a significant and independent association with fracture risk (RR/SD for BUA =1.34 [95%CI 1.22-1.49]).Conclusions : This study confirms that QUS of the heel using validated devices predicts risk of different fracture outcomes in elderly men and women. Further research and international collaborations are needed for standardisation of QUS parameters across various manufacturers and inclusion of QUS in fracture risk assessment tools. Disclosure of Interest : None declared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fenix on suuri metsäteollisuuden tuotannonohjausjärjestelmä. Fenix-järjestelmän raportointi- ja tulostuspalvelut elävätvaihdekautta. Aikaisemmin käytetyt raportointityökalut ovat vanhentumassa ja neon korvattava uusilla. Uusi raportointialusta, Global Printing System (GPS), onrakennettu StreamServe Business Communication Platformin ympärille. Uuden alustan on tarkoitus hoitaa Fenixin tulostus sekä raportointitehtävät. Työ kuvaa raportointialustan toteutuksen sekä sen tärkeimmät ominaisuudet. Uuden alustan suorituskyvyssä on ollut toivomisen varaa. Etenkin suurien raporttien generoiminen on kestänyt joskus toivottoman pitkään. Työssä analysoidaan raportointialustan suorituskykyä ja etsitään mahdolliset pullonkaulat. Suorituskyvyn heikkouksiin pyritään löytämään ratkaisut ja annetaan ehdotuksia suorituskyvyn parantamiseksi. XML pohjaisena järjestelmänä GPS:n suorituskyvyssä suurta osaaesittää XML:n tehokkuus. GPS sisääntuleva data tulee XML-muodossa ja sisääntulon parsimisen tehokkuus on avaintekijöitä koko GPS:n tehokkuuden kannalta. Suorituskyvyn parantamisessa keskitytäänki vahvasti XML:n tehokkaampaan käyttöön ja esitetään ehdotuksia sen parantamiseksi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use by police services and inquiring agencies of forensic data in an intelligence perspective is still fragmentary and to some extent ignored. In order to increase the efficiency of criminal investigation to target illegal drug trafficking organisations and to provide valuable information about their methods, it is necessary to include and interpret objective drug analysis results already during the investigation phase. The value of visual, physical and chemical data of seized ecstasy tablets, as a support for criminal investigation on a strategic and tactical level has been investigated. In a first phase different characteristics of ecstasy tablets have been studied in order to define their relevance, variation, correlation and discriminating power in an intelligence perspective. During 5 years, over 1200 cases of ecstasy seizures (concerning about 150000 seized tablets) coming from different regions of Switzerland (City and Canton of Zurich, Cantons Ticino, Neuchâtel and Geneva) have been systematically recorded. This turned out to be a statistically representative database including large and small cases. During the second phase various comparison and clustering methods have been tested and evaluated, on the type and relevance of tablet characteristics, thus increasing knowledge about synthetic drugs, their manufacturing and trafficking. Finally analytical methodologies have been investigated and formalised, applying traditional intelligence methods. In this context classical tools, which are used in criminal analysis (like the I2 Analyst Notebook, I2 Ibase, ?) have been tested and adapted to address the specific need of forensic drug intelligence. The interpretation of these links provides valuable information about criminal organisations and their trafficking methods. In the final part of this thesis practical examples illustrate the use and value of such information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the intense international competition, demanding, and sophisticated customers, and diverse transforming technological change, organizations need to renew their products and services by allocating resources on research and development (R&D). Managing R&D is complex, but vital for many organizations to survive in the dynamic, turbulent environment. Thus, the increased interest among decision-makers towards finding the right performance measures for R&D is understandable. The measures or evaluation methods of R&D performance can be utilized for multiple purposes; for strategic control, for justifying the existence of R&D, for providing information and improving activities, as well as for the purposes of motivating and benchmarking. The earlier research in the field of R&D performance analysis has generally focused on either the activities and considerable factors and dimensions - e.g. strategic perspectives, purposes of measurement, levels of analysis, types of R&D or phases of R&D process - prior to the selection of R&Dperformance measures, or on proposed principles or actual implementation of theselection or design processes of R&D performance measures or measurement systems. This study aims at integrating the consideration of essential factors anddimensions of R&D performance analysis to developed selection processes of R&D measures, which have been applied in real-world organizations. The earlier models for corporate performance measurement that can be found in the literature, are to some extent adaptable also to the development of measurement systemsand selecting the measures in R&D activities. However, it is necessary to emphasize the special aspects related to the measurement of R&D performance in a way that make the development of new approaches for especially R&D performance measure selection necessary: First, the special characteristics of R&D - such as the long time lag between the inputs and outcomes, as well as the overall complexity and difficult coordination of activities - influence the R&D performance analysis problems, such as the need for more systematic, objective, balanced and multi-dimensional approaches for R&D measure selection, as well as the incompatibility of R&D measurement systems to other corporate measurement systems and vice versa. Secondly, the above-mentioned characteristics and challenges bring forth the significance of the influencing factors and dimensions that need to be recognized in order to derive the selection criteria for measures and choose the right R&D metrics, which is the most crucial step in the measurement system development process. The main purpose of this study is to support the management and control of the research and development activities of organizations by increasing the understanding of R&D performance analysis, clarifying the main factors related to the selection of R&D measures and by providing novel types of approaches and methods for systematizing the whole strategy- and business-based selection and development process of R&D indicators.The final aim of the research is to support the management in their decision making of R&D with suitable, systematically chosen measures or evaluation methods of R&D performance. Thus, the emphasis in most sub-areas of the present research has been on the promotion of the selection and development process of R&D indicators with the help of the different tools and decision support systems, i.e. the research has normative features through providing guidelines by novel types of approaches. The gathering of data and conducting case studies in metal and electronic industry companies, in the information and communications technology (ICT) sector, and in non-profit organizations helped us to formulate a comprehensive picture of the main challenges of R&D performance analysis in different organizations, which is essential, as recognition of the most importantproblem areas is a very crucial element in the constructive research approach utilized in this study. Multiple practical benefits regarding the defined problemareas could be found in the various constructed approaches presented in this dissertation: 1) the selection of R&D measures became more systematic when compared to the empirical analysis, as it was common that there were no systematic approaches utilized in the studied organizations earlier; 2) the evaluation methods or measures of R&D chosen with the help of the developed approaches can be more directly utilized in the decision-making, because of the thorough consideration of the purpose of measurement, as well as other dimensions of measurement; 3) more balance to the set of R&D measures was desired and gained throughthe holistic approaches to the selection processes; and 4) more objectivity wasgained through organizing the selection processes, as the earlier systems were considered subjective in many organizations. Scientifically, this dissertation aims to make a contribution to the present body of knowledge of R&D performance analysis by facilitating dealing with the versatility and challenges of R&D performance analysis, as well as the factors and dimensions influencing the selection of R&D performance measures, and by integrating these aspects to the developed novel types of approaches, methods and tools in the selection processes of R&D measures, applied in real-world organizations. In the whole research, facilitation of dealing with the versatility and challenges in R&D performance analysis, as well as the factors and dimensions influencing the R&D performance measure selection are strongly integrated with the constructed approaches. Thus, the research meets the above-mentioned purposes and objectives of the dissertation from the scientific as well as from the practical point of view.