926 resultados para Analogous ground
Resumo:
In some animal societies, males vary in the strategies and tactics that they use for reproduction. Explanations for the evolution of alternative tactics have usually focussed on extrinsic factors such as social status, the environment or population density and have rarely examined proximate differences between individuals. Anecdotal evidence suggests that two alternative reproductive tactics occur in cooperatively breeding male Cape ground squirrels. Here we show that there is strong empirical support for physiological and behavioural differences to uphold this claim. `Dispersed' males have higher resting metabolic rates and a heightened pituitary activity, compared with philopatric 'natal' males that have higher circulating cortisol levels. Dispersed males also spend more time moving and less time feeding than natal males. Additionally, lone males spend a greater proportion of their time vigilant and less of their time foraging than those that were in groups. The choice of whether to stay natal or become a disperser may depend on a number of factors such as age, natal group kin structure and reproductive suppression, and the likelihood of successful reproduction whilst remaining natal. Measuring proximate factors, such as behavioural and endocrine function, may provide valuable insights into mechanisms that underlie the evolution of alternative reproductive tactics.
Resumo:
This is a major review work on ground water remediation since the earlier work of Mulligan et al published in 2001 in Engineering Geology Journal. This work resulted from the joint research project of QUB and University of Malaya on iron removal from groundwater for public water supply.
Resumo:
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.
Resumo:
We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.
Resumo:
Resonance Raman (RR) spectroscopy has been used to probe the interaction between dipyridophenazine (dppz) complexes of ruthenium(II), [Ru(L)(2)(dppz)](2+) (L = 1,10-phenanthroline (1) and 2,2-bipyridyl (2)), and calf-thymus DNA. Ground electronic state RR spectra at selected probe wavelengths reveal enhancement patterns which reflect perturbation of the dppz-centered electronic transitions in the UV-vis spectra in the presence of DNA. Comparison of the RR spectra recorded of the short-lived MLCT excited states of both complexes in aqueous solution with those of the longer-lived states of the complexes in the DNA environment reveals changes to excited state modes, suggesting perturbation of electronic transitions of the dppz ligand in the excited state as a result of intercalation. The most prominent feature, at 1526 cm(-1), appears in the spectra of both 1 and 2 and is a convenient marker band for intercalation. For 1, the excited state studies have been extended to the A and A enantiomers. The marker band appears at the same frequency for both but with different relative intensities. This is interpreted as reflecting the distinctive response of the enantiomers to the chiral environment of the DNA binding sites. The results, together with some analogous data for other potentially intercalating complexes, are considered in relation to the more general application of time-resolved RR spectroscopy for investigation of intercalative interactions of photoexcited metal complexes with DNA.
Resumo:
The long-term morphodynamic ordering of gravel-dominated coastal systems (GDCS), many of which serve as coastal defences in northwest Europe, is dominated by extreme events that generate barrier crest overflow. An understanding of this morphodynamic ordering is fraught with several unresolved difficulties. These are related to the twin problems of the inadequacy of pertinent morphodynamic parameterisation and of obtaining data from modern shores enabling such parameterisation. Major uncertainties concern the timing of over-crest flow in terms of return period of extreme elevation; the intensity and structure of the overflow field; antecedent beachface characteristics in response to storms; the rate of relative sea-level change; tidal stage control; and barrier resistance to forcing, itself determined by a number of unknowns including barrier form and size, sediment size and mosaics, and barrier resilience. While generalised extreme value modelling may provide a means of characterising overwashing return-period and its variability, exceptional tsunami events are outside the scope of such modelling. The characterisation of GDCS morphodynamics in terms of the forcing extreme events will necessitate integrating some or all of these parameters into a single model.