998 resultados para American socialist society.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2010 Berezhkovskii and coworkers introduced the concept of local accumulation time (LAT) as a finite measure of the time required for the transient solution of a reaction diffusion equation to effectively reach steady state(Biophys J. 99, L59 (2010); Phys Rev E. 83, 051906 (2011)). Berezhkovskii’s approach is a particular application of the concept of mean action time (MAT) that was introduced previously by McNabb (IMA J Appl Math. 47, 193 (1991)). Here, we generalize these previous results by presenting a framework to calculate the MAT, as well as the higher moments, which we call the moments of action. The second moment is the variance of action time; the third moment is related to the skew of action time, and so on. We consider a general transition from some initial condition to an associated steady state for a one–dimensional linear advection–diffusion–reaction partial differential equation(PDE). Our results indicate that it is possible to solve for the moments of action exactly without requiring the transient solution of the PDE. We present specific examples that highlight potential weaknesses of previous studies that have considered the MAT alone without considering higher moments. Finally, we also provide a meaningful interpretation of the moments of action by presenting simulation results from a discrete random walk model together with some analysis of the particle lifetime distribution. This work shows that the moments of action are identical to the moments of the particle lifetime distribution for certain transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study is to prepare Ca, P and Si-containing ternary oxide nagelschmidtite (NAGEL, Ca7Si2P2O16) bioceramics and explore their in vitro bioactivity for potential bone tissue regeneration. We prepared dense NAGEL ceramics through high-temperature sintering of NAGEL ceramic powders. The apatite-mineralization ability, dissolution rate, and human osteoblast response (including cytotoxicity analysis, attachment, morphology, proliferation, and bone-related gene expression) to NAGEL ceramics have been systematically studied by comparing with conventional β-tricalcium phosphate (β-TCP) ceramics. The results showed that NAGEL ceramics possessed more obvious apatite mineralization and dissolution (degradation) and stimulated bone-related gene expression (OCN and OPN) of osteoblasts than β-TCP ceramics. NAGEL ceramics also showed no significant cytotoxicity. NAGEL ceramics supported osteoblast attachment, proliferation, and osteogenic gene expression, with a comparable cell proliferation activity with β-TCP ceramics. These results indicate that novel NAGEL bioceramics with the specific composition of Ca7Si2P2O16, are a promising biomaterial for bone tissue regeneration application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study suggests that physical activity is a more important lifestyle modification than sleep to improve cardiovascular risk factors in postmenopausal women; however both lifestyle modifications, including, ensuring sufficient sleep quality and duration and increasing physical activity should be strongly encouraged by menopause practitioners in postmenopausal women care.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 298: R1485-R1495, 2010. First published April 14, 2010; doi:10.1152/ajpregu.00467.2009.-The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complexes of the type \[M(phen)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and phen = 1,10-phenanthroline) were found to co-crystallize to form molecular alloys (solid solutions of molecules) with general formula \[MAxMB1–x(phen)3](PF6)2·0.5H2O in which the relative concentrations of the metal complexes in the crystals closely match those in the crystallizing solution. Consequently, the composition of the co-crystals can be accurately predicted and controlled by modulating the relative concentrations of the metal complexes in the crystallizing solution. Although they are chemically and structurally similar, complexes of the type \[M(bipy)3](PF6)2 (M = Ni(II), Fe(II), Ru(II) and bipy = 2,2′-bipyridine) display markedly different behavior upon co-crystallization. In this case, the resulting co-crystals of general formula \[MAxMB1–x(bipy)3](PF6)2 have relative concentrations of the constituent complexes that are markedly different from the relative concentrations of the complexes initially present in the crystallizing solution. For example, when the nickel and iron complexes are co-crystallized from a solution containing a 50:50 ratio of each, the result is the formation of some crystals with a higher proportion of iron and others with a higher proportion of nickel. The relative concentrations of the metal complexes in the crystals can vary from those in the crystallizing solutions by as much as 15%. This result was observed for a range of combinations of metal complexes (Ni/Fe, Ni/Ru, and Fe/Ru) and a range of starting concentrations in the crystallizing solutions (90:10 through to 10:90 in 10% increments). To explain this remarkable result, we introduce the concept of “supramolecular selection”, which is a process driven by molecular recognition that leads to the partially selective aggregation of like molecules during crystallization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we consider the Eldar model [3] from embryology in which a bone morphogenic protein, a short gastrulation protein, and their compound react and diffuse. We carry out a perturbation analysis in the limit of small diffusivity of the bone morphogenic protein. This analysis establishes conditions under which some elementary results of [3] are valid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Analytical Electron Microscope (AEM), with which secondary X-ray emission from a thin (<150nm), electron-transparent material is measured, has rapidly become a versatile instrument for qualitative and quantitative elemental analyses of many materials, including minerals. With due regard for sources of error in experimental procedures, it is possible to obtain high spatial resolution (~20nm diameter) and precise elemental analyses (~3% to 5% relative) from many silicate minerals. In addition, by utilizing the orientational dependence of X-ray emission for certain multi-substituted crystal structures, site occupancies for individual elements within a unit cell can be determined though with lower spatial resolution. The relative ease with which many of these compositional data may be obtained depends in part on the nature of the sample, but, in general, is comparable to other solid state analytical techniques such as X-ray diffraction and electron microprobe analysis. However, the improvement in spatial resolution obtained with the AEM (up to two orders of magnitude in analysis diameter) significantly enhances interpretation of fine-grained assemblages in many terrestrial or extraterrestrial rocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present experimental results that demonstrate that the wavelength of the fundamental localised surface plasmon resonance for spherical gold nanoparticles on glass can be predicted using a simple, one line analytical formula derived from the electrostatic eigenmode method. This allows the role of the substrate in lifting mode degeneracies to be determined, and the role of local environment refractive indices on the plasmon resonance to be investigated. The effect of adding silica to the casting solution in minimizing nanopaticle agglomeration is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to determine the effect of carbohydrate (CHO; sucrose) ingestion and environmental heat on the development of fatigue and the distribution of power output during a 16.1-km cycling time trial. Ten male cyclists (Vo(2max) = 61.7 +/- 5.0 ml.kg(-1).min(-1), mean +/- SD) performed four 90-min constant-pace cycling trials at 80% of second ventilatory threshold (220 +/- 12 W). Trials were conducted in temperate (18.1 +/- 0.4 degrees C) or hot (32.2 +/- 0.7 degrees C) conditions during which subjects ingested either CHO (0.96 g.kg(-1).h(-1)) or placebo (PLA) gels. All trials were followed by a 16.1-km time trial. Before and immediately after exercise, percent muscle activation was determined using superimposed electrical stimulation. Power output, integrated electromyography (iEMG) of vastus lateralis, rectal temperature, and skin temperature were recorded throughout the trial. Percent muscle activation significantly declined during the CHO and PLA trials in hot (6.0 and 6.9%, respectively) but not temperate conditions (1.9 and 2.2%, respectively). The decline in power output during the first 6 km was significantly greater during exercise in the heat. iEMG correlated significantly with power output during the CHO trials in hot and temperate conditions (r = 0.93 and 0.73; P < 0.05) but not during either PLA trial. In conclusion, cyclists tended to self-select an aggressive pacing strategy (initial high intensity) in the heat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.