999 resultados para Amazonian forest
Resumo:
This study investigates patterns of forest structure and tree species diversity in an anthropogenic palm grove and undisturbed areas at the seasonally-dry Pinkaití research station, in the Kayapó Indigenous Area. This site, managed by the Conservation International do Brasil, is the most southeastern site floristically surveyed in the Amazon until now. The secondary and a nearby undisturbed forest were sampled in a group of 52 floristic plots of 0.0625-ha (25x25-m) where all trees with DBH > 10 cm were measured and identified. The analyses were complemented with other two floristic plots of 1-ha (10x1000-m). The present study has shown that the Pinkaití, like other seasonally-dry forests, have great heterogeneity in forest structure and composition, associated with biotic characteristics of the most important tree species, natural disturbance and history of land-use. The palm grove, moderately dominated by the arborescent palm Attalea maripa (Aubl.) Mart., presented high tree species diversity and was floristically similar to undisturbed forests at the study site. It is discussed the importance of large arborescent palms for the seasonally-dry Amazon forests regeneration.
Resumo:
Few studies have been conducted to verify how the structure of the forest affects the occurence and abundance of neotropical birds. Our research was undertaken between January 2002 and July 2004 at the Reserva Ducke, near Manaus (02º55',03º01'S; 59º53',59º59'W) in central Amazonia, to verify how the forest structure affects the occurrence and abundance of two bird species: the Plain-brown Woodcreeper Dendrocincla fuliginosa and the White-chinned Woodcreeper Dendrocincla merula. Bird species occurrence was recorded using lines of 20 mist-nets (one sample unit), along 51 1-km transects distributed along 9 pararel 8 km trails covering an area of 6400 ha. Along these transects, we placed 50 x 50m plots where we recorded forest structure components (tree abundance, canopy openness, leaf litter, standing dead trees, logs, proximity to streams, and altitude). We then related these variables to bird occurence and abundance using multiple logistic and multiple linear regression models, respectively. We found that D. fuliginosa frequently used plateau areas; being more abundant in areas with more trees. On the other hand, D. merula occurred more frequently and was more abundant in areas with low tree abundance. Our results suggest that although both species overlap in the reserve (both were recorded in at least 68% of the sampled sites), they differ in the way they use the forest microhabitats. Therefore, local variation in the forest structure may contribute to the coexistence of congeneric species and may help to maintain local alpha diversity.
Resumo:
This study analyzed the influence of forest structural components on the occurence, size and density of groups of Bare-face Tamarin (Saguinus bicolor) - the most threatened species in the Amazon - and produced the first map of distribution of groups in large-scale spatial within the area of continuous forest. Population censuses were conducted between November 2002 and July 2003, covering 6400 hectares in the Ducke Reserve, Manaus-AM, Brazil. Groups of S. bicolor were recorded 41 times accordingly distributed in the environments: plateau (20); slopes (12); and lowlands (09). The mean group size was 4.8 indiv./group, and ranged from 2 to 11 individuals. In the sites where the groups were recorded, and in an equivalent number of sites where no tamarins were found located at least 500 m from those where they had been recorded, we placed 50 m x 50 m plots to record the following forest structural components: abundance of trees; abundance of lianas; abundance of fruiting trees and lianas; abundance of snags; abundance of logs; percentage of canopy opening; leaf litter depth; and altitude. Bare-face Tamarin more often uses areas with lower abundance of forest logs, smaller canopy opening and with higher abundance of snags, areas in the forest with smaller canopy opening present higher density of S. bicolor groups. Apparently this species does not use the forest in a random way, and may select areas for its daily activities depending on the micro-environmental heterogeneity produced by the forest structural components.
Resumo:
Long term applications of leguminous green mulch could increase mineralizable nitrogen (N) beneath cupuaçu trees produced on the infertile acidic Ultisols and Oxisols of the Amazon Basin. However, low quality standing cupuaçu litter could interfere with green mulch N release and soil N mineralization. This study compared mineral N, total N, and microbial biomass N beneath cupuaçu trees grown in two different agroforestry systems, north of Manaus, Brazil, following seven years of different green mulch application rates. To test for net interactions between green mulch and cupuaçu litter, dried gliricidia and inga leaves were mixed with senescent cupuaçu leaves, surface applied to an Oxisol soil, and incubated in a greenhouse for 162 days. Leaf decomposition, N release and soil N mineralization were periodically measured in the mixed species litter treatments and compared to single species applications. The effect of legume biomass and cupuaçu litter on soil mineral N was additive implying that recommendations for green mulch applications to cupuaçu trees can be based on N dynamics of individual green mulch species. Results demonstrated that residue quality, not quantity, was the dominant factor affecting the rate of N release from leaves and soil N mineralization in a controlled environment. In the field, complex N cycling and other factors, including soil fauna, roots, and microclimatic effects, had a stronger influence on available soil N than residue quality.
Resumo:
Bioassays under laboratory conditions aiming to determine the larvicidal activity of Bacillus sphaericus were carried out on Anopheles darlingi and Culex quinquefasciatus. In order to estimate the toxicity through median lethal concentration (LC50) and the relative potency of the strains to B. sphaericus standard strain 2362, probit analysis was performed utilizing the POLO-PC program. The findings of LC50 pointed out high effectiveness on strains IB15 (0.040 ppm), IB19 and S1116 (0.048 ppm), IB16 (0.052 ppm) and S265 (0.057 ppm). Strain IB15 presented nearly 50% more potency than strain 2362 in bioassays conducted on A. darlingi. It was observed that IB16 and S1116 strains were the most powerful against C. quinquefasciatus, showing to be about 300-400% stronger than 2362 strain. The results show that laboratory conditioned evaluation can be an important way to select promising bacteria with entomopathogenic action on biolarvicides production for use on mosquitoes breeding sites.
Resumo:
The present study is a compilation of the literature about vegetation of mangrove forest of the north coast of Brazil. It synthesizes the knowledge about this important ecosystem and lists the currently available literature. The study focuses on the coast of Pará and Maranhão states, which are covered by a continuous belt of mangroves. The mangrove flora comprises six mangrove tree species and several associated species. Mangrove tree height and stem diameter vary as a function of abiotic local stand parameters. Seasonal variation in rainfall and salinity affect the species' phenology and litter fall. Local population use products derived from mangrove plants for different purposes (e.g. fuel; medicinal; rural construction). The increase in the coastal population has given rise to conflicts, which impact on mangrove forest.
Resumo:
This article takes an ecological approach to the genetic diversity of Rosewood (Aniba rosaeodora Ducke) in a central Amazonian terra firme forest north of Manaus. Planted Rosewood setting, under partial shaded canopy, were assessed in terms of fruiting production, frugivory, and seed dispersal. Using RAPD molecular analysis procedures, the influence of the spatial distribution of adult trees on the genetic diversity (polymorphism) of saplings was assessed with genetic samples from 34 reproductive trees and 60 saplings. The density and distribution patterns the reproductive trees did not modify the sapling"s diversity (1.86%, AMOVA). Two types of adult tree dispersion were identified; i) clumped and ii) more widely dispersed. Polymorphism (77.5%) and gene flow were high between these. Although more sapling genetic variability in areas with a higher density of mature plants was not as high as expected, density did not affect the genetic diversity of samplings, indicating a high incidence of gene flow amongst trees. In planted Rosewood population (surrounded by low disturbed forest), fruiting trees experienced a high level of removal of seeds by toucans (Rhamphastidae), about of 50%. The high gene flow found among native trees suggested that toucans, promoting seed rain at short and long distances from maternal trees, actively contribute to the maintenance of genetic diversity within wild rosewood populations.
Resumo:
Poor water quality condition has been pointed out as one of the major causes for the high mortality of ornamental fishes exported from the state of Amazonas, Brazil. The purpose of the current study was to define water quality standards for cardinal tetra (Paracheirodon axelrodi), by establishing the lower and higher for lethal temperature (LT50), lethal concentration (LC50) for total ammonia and nitrite and LC50 for acid and alkaline pH. According to the findings, cardinal tetra is rather tolerant to high temperature (33.3 ºC), to a wide pH range (acid pH=2.9 and alkaline pH=8.8) and to high total ammonia concentration (23.7 mg/L). However, temperatures below 19.6 ºC and nitrite concentrations above 1.1 mg/L NO2- may compromise fish survival especially during long shipment abroad.
Resumo:
Forest regrowth occupies an extensive and increasing area in the Amazon basin, but accurate assessment of the impact of regrowth on carbon and nutrient cycles has been hampered by a paucity of available allometric equations. We develop pooled and species-specific equations for total aboveground biomass for a study site in the eastern Amazon that had been abandoned for 15 years. Field work was conducted using randomized branch sampling, a rapid technique that has seen little use in tropical forests. High consistency of sample paths in randomized branch sampling, as measured by the standard error of individual paths (14%), suggests the method may provide substantial efficiencies when compared to traditional procedures. The best fitting equations in this study used the traditional form Y=a×DBHb, where Y is biomass, DBH is diameter at breast height, and a and b are both species-specific parameters. Species-specific equations of the form Y=a(BA×H), where Y is biomass, BA is tree basal area, H is tree height, and a is a species-specific parameter, fit almost as well. Comparison with previously published equations indicated errors from -33% to +29% would have occurred using off-site relationships. We also present equations for stemwood, twigs, and foliage as biomass components.
Resumo:
An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.
Resumo:
We evaluated in this study the total mercury concentration in feathers of Ardea albus collected in a colony located in the city of Belem-PA, Brazil in a prospective trial for its use as bioindicators of mercury burden in Amazonia ecosystems. An Atomic absorption spectrophotometry with gold amalgamation was used for the metal determination. The total mercury average concentration in body feathers was 2.2 ± 1.5 µg.g-1 and 1.3 ± 0.9 µg.g-1 in wing feathers. No correlation was observed between total mercury concentration and the length of body or wing feathers. Total mercury concentration was above 5 µg.g-1 dry weight in only one body feather sample.
Resumo:
Global warming has potentially catastrophic impacts in Amazonia, while at the same time maintenance of the Amazon forest offers one of the most valuable and cost-effective options for mitigating climate change. We know that the El Niño phenomenon, caused by temperature oscillations of surface water in the Pacific, has serious impacts in Amazonia, causing droughts and forest fires (as in 1997-1998). Temperature oscillations in the Atlantic also provoke severe droughts (as in 2005). We also know that Amazonian trees die both from fires and from water stress under hot, dry conditions. In addition, water recycled through the forest provides rainfall that maintains climatic conditions appropriate for tropical forest, especially in the dry season. What we need to know quickly, through intensified research, includes progress in representing El Niño and the Atlantic oscillations in climatic models, representation of biotic feedbacks in models used for decision-making about global warming, and narrowing the range of estimating climate sensitivity to reduce uncertainty about the probability of very severe impacts. Items that need to be negotiated include the definition of "dangerous" climate change, with the corresponding maximum levels of greenhouse gases in the atmosphere. Mitigation of global warming must include maintaining the Amazon forest, which has benefits for combating global warming from two separate roles: cutting the flow the emissions of carbon each year from the rapid pace of deforestation, and avoiding emission of the stock of carbon in the remaining forest that can be released by various ways, including climate change itself. Barriers to rewarding forest maintenance include the need for financial rewards for both of these roles. Other needs are for continued reduction of uncertainty regarding emissions and deforestation processes, as well as agreement on the basis of carbon accounting. As one of the countries most subject to impacts of climate change, Brazil must assume the leadership in fighting global warming.
Resumo:
Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.
Resumo:
A preliminary survey of the spider fauna in natural and artificial forest gap formations at Porto Urucu, a petroleum/natural gas production facility in the Urucu river basin, Coari, Amazonas, Brazil is presented. Sampling was conducted both occasionally and using a protocol composed of a suite of techniques: beating trays (32 samples), nocturnal manual samplings (48), sweeping nets (16), Winkler extractors (24), and pitfall traps (120). A total of 4201 spiders, belonging to 43 families and 393 morphospecies, were collected during the dry season, in July, 2003. Excluding the occasional samples, the observed richness was 357 species. In a performance test of seven species richness estimators, the Incidence Based Coverage Estimator (ICE) was the best fit estimator, with 639 estimated species. To evaluate differences in species richness associated with natural and artificial gaps, samples from between the center of the gaps up to 300 meters inside the adjacent forest matrix were compared through the inspection of the confidence intervals of individual-based rarefaction curves for each treatment. The observed species richness was significantly higher in natural gaps combined with adjacent forest than in the artificial gaps combined with adjacent forest. Moreover, a community similarity analysis between the fauna collected under both treatments demonstrated that there were considerable differences in species composition. The significantly higher abundance of Lycosidae in artificial gap forest is explained by the presence of herbaceous vegetation in the gaps themselves. Ctenidae was significantly more abundant in the natural gap forest, probable due to the increase of shelter availability provided by the fallen trees in the gaps themselves. Both families are identified as potential indicators of environmental change related to the establishment or recovery of artificial gaps in the study area.
Resumo:
Fish meal free diets were formulated to contain graded protein levels as 25% (diet 1), 30% (diet 2), 35% (diet 3) and 40% (diet 4). The diets were fed to tambaqui juveniles (Colossoma macropomum) (46.4 ± 6.3g) in randomly designed recirculating systems for 60 days, to determine the optimum protein requirement for the fish. The final weight of the fish, weight gain (28.1, 28.5, 32.2, 28.0g) and specific growth rate increased (P>0.05) consistently with increasing dietary protein up to treatment with 35% protein diet and then showed a declining trend. Feed intake followed the same trend resulting in best feed efficiency (62.5%) in fish fed diet with 35% protein. Similarly, the protein intake increased significantly with increasing dietary protein levels and reduced after the fish fed with 35% protein; while protein efficiency ratio (2.28, 1.99, 1.87, 1.74) decreased with increasing dietary protein levels. Carcass ash and protein had linear relationship with dietary protein levels while the lipid showed a decreasing trend. Ammonia content (0.68, 0.73, 0.81, 1.21 mg L-1) of the experimental waters also increased (P<0.05) with increasing protein levels while pH, dissolved oxygen and temperature remained fairly constant without any clear pattern of inclination. Broken-line estimation of the weight gain indicated 30% protein as the optimum requirement for the fish.