952 resultados para Alveolar bone loss
Resumo:
BACKGROUND: Early implant placement is one of the treatment options in postextraction sites in the anterior maxilla. Implant placement is performed after a soft tissue healing period of 4 to 8 weeks. Implant placement is combined with a simultaneous guided bone regeneration (GBR) procedure to rebuild esthetic facial hard and soft tissue contours. METHODS: In this prospective case-series study, 20 consecutive patients treated with an implant-borne single crown were prospectively followed for 12 months. Clinical, radiologic, and esthetic parameters were recorded to assess treatment outcomes. RESULTS: At the 12-month examination, all 20 implants were successfully integrated, demonstrating ankylotic stability and healthy peri-implant soft tissues as documented by standard parameters. The esthetic outcomes assessed by a pink esthetic score (PES) and a white esthetic score (WES) demonstrated pleasing results overall. The WES values were slightly superior to the PES values. The periapical radiographs showed minimal crestal bone loss around the used bone level implants, with mean bone loss of 0.18 mm at 12 months. Only one implant showed >0.5 mm bone loss, combined with minor mucosal recession of 0.5 to 1.0 mm. CONCLUSIONS: This prospective case series study evaluating the concept of early implant placement demonstrated successful tissue integration for all 20 implants. The short-term follow-up of 12 months revealed pleasing esthetic outcomes overall, as assessed by objective parameters. The risk for mucosal recession was low; only one patient showed minor recession of the facial mucosa. These encouraging results need to be confirmed with 3- and 5-year follow-up examinations.
Resumo:
To study the time course of demineralization and fracture incidence after spinal cord injury (SCI), 100 paraplegic men with complete motor loss were investigated in a cross-sectional study 3 months to 30 years after their traumatic SCI. Fracture history was assessed and verified using patients' files and X-rays. BMD of the lumbar spine (LS), femoral neck (FN), distal forearm (ultradistal part = UDR, 1/3 distal part = 1/3R), distal tibial diaphysis (TDIA), and distal tibial epiphysis (TEPI) was measured using DXA. Stiffness of the calcaneus (QUI.CALC), speed of sound of the tibia (SOS.TIB), and amplitude-dependent SOS across the proximal phalanges (adSOS.PHAL) were measured using QUS. Z-Scores of BMD and quantitative ultrasound (QUS) were plotted against time-since-injury and compared among four groups of paraplegics stratified according to time-since-injury (<1 year, stratum I; 1-9 years, stratum II; 10-19 years, stratum III; 20-29 years, stratum IV). Biochemical markers of bone turnover (deoxypyridinoline/creatinine (D-pyr/Cr), osteocalcin, alkaline phosphatase) and the main parameters of calcium phosphate metabolism were measured. Fifteen out of 98 paraplegics had sustained a total of 39 fragility fractures within 1,010 years of observation. All recorded fractures were fractures of the lower limbs, mean time to first fracture being 8.9 +/- 1.4 years. Fracture incidence increased with time-after-SCI, from 1% in the first 12 months to 4.6%/year in paraplegics since >20 years ( p<.01). The overall fracture incidence was 2.2%/year. Compared with nonfractured paraplegics, those with a fracture history had been injured for a longer time ( p<.01). Furthermore, they had lower Z-scores at FN, TEPI, and TDIA ( p<.01 to <.0001), the largest difference being observed at TDIA, compared with the nonfractured. At the lower limbs, BMD decreased with time at all sites ( r=.49 to.78, all p<.0001). At FN and TEPI, bone loss followed a log curve which leveled off between 1 to 3 years after injury. In contrast, Z-scores of TDIA continuously decreased even beyond 10 years after injury. LS BMD Z-score increased with time-since-SCI ( p<.05). Similarly to DXA, QUS allowed differentiation of early and rapid trabecular bone loss (QUI.CALC) vs slow and continuous cortical bone loss (SOS.TIB). Biochemical markers reflected a disproportion between highly elevated bone resorption and almost normal bone formation early after injury. Turnover declined following a log curve with time-after-SCI, however, D-pyr/Cr remained elevated in 30% of paraplegics injured >10 years. In paraplegic men early (trabecular) and persistent (cortical) bone loss occurs at the lower limbs and leads to an increasing fracture incidence with time-after-SCI.
Resumo:
Prednisone is a major factor of bone loss after kidney transplantation. The role of hyperparathyroidism and immunosuppressors is less clear.
Resumo:
To compare the effects of deflazacort (DEFLA) vs. prednisone (PRED) on bone mineral density (BMD), body composition, and lipids, 24 patients with end-stage renal disease were randomized in a double blind design and followed 78 weeks after kidney transplantation. BMD and body composition were assessed using dual energy x-ray absorptiometry. Seventeen patients completed the study. Glucocorticosteroid doses, cyclosporine levels, rejection episodes, and drop-out rates were similar in both groups. Lumbar BMD decreased more in PRED than in DEFLA (P < 0.05), the difference being particularly marked after 24 weeks (9.1 +/- 1.8% vs. 3.0 +/- 2.4%, respectively). Hip BMD decreased from baseline in both groups (P < 0.01), without intergroup differences. Whole body BMD decreased from baseline in PRED (P < 0.001), but not in DEFLA. Lean body mass decreased by approximately 2.5 kg in both groups after 6-12 weeks (P < 0.001), then remained stable. Fat mass increased more (P < 0.01) in PRED than in DEFLA (7.1 +/- 1.8 vs. 3.5 +/- 1.4 kg). Larger increases in total cholesterol (P < 0.03), low density lipoprotein cholesterol (P < 0.01), lipoprotein B2 (P < 0.03), and triglycerides (P = 0.054) were observed in PRED than in DEFLA. In conclusion, using DEFLA instead of PRED in kidney transplant patients is associated with decreased loss of total skeleton and lumbar spine BMD, but does not alter bone loss at the upper femur. DEFLA also helps to prevent fat accumulation and worsening of the lipid profile.
Resumo:
OBJECTIVES To evaluate facial esthetics in patients with unilateral cleft lip and palate (UCLP) after alveolar bone grafting combined with rhinoplasty between 2 and 4 years of age. DESIGN Retrospective case-control study. SETTING The Department of Pediatric Surgery, Institute of Mother and Child, Warsaw, Poland. MATERIAL AND METHODS Photographs of full faces and cropped images of five nasolabial components: nasal deviation, nasal form, nasal profile, vermillion border, and inferior view were assessed by 5 professional and 14 layraters in 29 children (23 boys and 6 girls; mean age = 5.3 years, SD 0.5; Early-grafted group) and 30 children (20 boys and 10 girls; mean age = 5.5 years, SD 1.0; Non-grafted group) with complete unilateral cleft lip and palate repaired with a one-stage closure. The groups differed regarding the timing of alveolar bone grafting: in the Early-grafted group, alveolar bone grafting in combination with rhinoplasty (ABG-R) was performed between 2 and 4 years of age (mean age = 2.3 years; SD 0.6); in the Non-grafted group, the alveolar defect was grafted after 9 years of age. No primary nose correction was carried out in any group. To rate esthetics, a modified five-grade esthetic index of Asher-McDade was used, where grade 1 means the most esthetic and grade 5 - the least esthetic outcome. RESULTS Esthetics of full faces and of all nasolabial elements in the Early-grafted group was significantly better than in Non-grafted group. The scores in the Early-grafted group ranged from 2.30 to 2.66 points, whereas in the Non-grafted group ranged from 2.66 to 3.17 points. All intergroup differences were statistically significant (p < 0.05). CONCLUSIONS Three years post-operatively, early alveolar bone grafting combined with rhinoplasty is favorable for facial esthetics in children with UCLP, but a longer follow-up is needed to assess whether the improvement was permanent.
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Resumo:
PURPOSE The purpose of this study was to document the long-term outcome of Brånemark implants installed in augmented maxillary bone and to identify parameters that are associated with peri-implant bone level. MATERIAL AND METHODS Patients of a periodontal practice who had been referred to a maxillofacial surgeon for iliac crest bone grafting in the atrophic maxilla were retrospectively recruited. Five months following grafting, they received 7-8 turned Brånemark implants. Following submerged healing of another 5 months, implants were uncovered and restorative procedures for fixed rehabilitation were initiated 2-3 months thereafter. The primary outcome variable was bone level defined as the distance from the implant-abutment interface to the first visible bone-to-implant contact. Secondary outcome variables included plaque index, bleeding index, probing depth, and levels of 40 species in subgingival plaque samples as identified by means of checkerboard DNA-DNA hybridization. RESULTS Nine out of 16 patients (eight females, one male; mean age 59) with 71 implants agreed to come in for evaluation after on average 9 years (SD 4; range 3-13) of function. One implant was deemed mobile at the time of inspection. Clinical conditions were acceptable with 11% of the implants showing pockets ≥ 5 mm. Periodontopathogens were encountered frequently and in high numbers. Clinical parameters and bacterial levels were highly patient dependent. The mean bone level was 2.30 mm (SD 1.53; range 0.00-6.95), with 23% of the implants demonstrating advanced resorption (bone level > 3 mm). Regression analysis showed a significant association of the patient (p < .001) and plaque index (p = .007) with bone level. CONCLUSIONS The long-term outcome of Brånemark implants installed in iliac crest-augmented maxillary bone is acceptable; however, advanced peri-implant bone loss is rather common and indicative of graft resorption. This phenomenon is patient dependent and seems also associated with oral hygiene.
Resumo:
The concept of platform switching has been introduced to implant dentistry based on clinical observations of reduced peri-implant crestal bone loss. However, published data are controversial, and most studies are limited to 12 months. The aim of the present randomized clinical trial was to test the hypothesis that platform switching has a positive impact on crestal bone-level changes after 3 years. Two implants with a diameter of 4 mm were inserted crestally in the posterior mandible of 25 patients. The intraindividual allocation of platform switching (3.3-mm platform) and the standard implant (4-mm platform) was randomized. After 3 months of submerged healing, single-tooth crowns were cemented. Patients were followed up at short intervals for monitoring of healing and oral hygiene. Statistical analysis for the influence of time and platform type on bone levels employed the Brunner-Langer model. At 3 years, the mean radiographic peri-implant bone loss was 0.69 ± 0.43 mm (platform switching) and 0.74 ± 0.57 mm (standard platform). The mean intraindividual difference was 0.05 ± 0.58 mm (95% confidence interval: -0.19, 0.29). Crestal bone-level alteration depended on time (p < .001) but not on platform type (p = .363). The present randomized clinical trial could not confirm the hypothesis of a reduced peri-implant crestal bone loss, when implants had been restored according to the concept of platform switching.
Resumo:
OBJECTIVES The paper's aim is to review dentin hypersensitivity (DHS), discussing pain mechanisms and aetiology. MATERIALS AND METHODS Literature was reviewed using search engines with MESH terms, DH pain mechanisms and aetiology (including abrasion, erosion and periodontal disease). RESULTS The many hypotheses proposed for DHS attest to our lack of knowledge in understanding neurophysiologic mechanisms, the most widely accepted being the hydrodynamic theory. Dentin tubules must be patent from the oral environment to the pulp. Dentin exposure, usually at the cervical margin, is due to a variety of processes involving gingival recession or loss of enamel, predisposing factors being periodontal disease and treatment, limited alveolar bone, thin biotype, erosion and abrasion. CONCLUSIONS The current pain mechanism of DHS is thought to be the hydrodynamic theory. The initiation and progression of DHS are influenced by characteristics of the teeth and periodontium as well as the oral environment and external influences. Risk factors are numerous often acting synergistically and always influenced by individual susceptibility. CLINICAL RELEVANCE Whilst the pain mechanism of DHS is not well understood, clinicians need to be mindful of the aetiology and risk factors in order to manage patients' pain and expectations and prevent further dentin exposure with subsequent sensitivity.
Resumo:
Periodontal disease is the major cause of tooth loss in man. The initial histological picture of the inflamed gingiva is characteristic of local inflammatory reaction involving polymorphonuclear leukocytes, vasculitis and localized tissue loss. Subsequent clinical stages of periodontal disease (mild gingivitis) show histological evidence of the involvement of the immune response with initial accumulation of macrophages, and lymphocytes devoid of surface staining immunoglobulins (presumably T cells). As the disease progresses, a predominance of surface and cytoplasmic staining lymphocytes and plasma cells are seen (severe gingivitis and periodontitis). Whether the occurrence of the immunoglobulin positive lymphocytes and the concurrent loss of collagen and resorption of alveolar bone seen in periodontitis is indicative of a direct cause and effect relationship has been a controversy.^ The majority of investigations in the periodontal field have involved the use of peripheral blood lymphocytes or serum. Blastogenic responses of peripheral blood lymphocytes and serum antibody titers from periodontal patients to a variety of oral bacteria have not shown any correlation between response and the severity of disease. The need to study the local immune response in inflamed gingiva is apparent. Since there are no baseline studies on the functional capabilities of the lymphoid cells present in gingiva from periodontitis patients, an in depth study involving the role of the immunoglobulin positive lymphocytes was investigated.^ Inflamed gingiva from four clinically defined periodontal disease states (mild gingivitis, severe gingivitis, periodontitis and severe periodontitis) were placed in gingival organ cultures. Class specific immunoglobulins were quantitated in gingival organ culture supernatants using an indirect sandwich technique. A significant difference in mean levels of IgA and IgG was seen between mild gingivitis and periodontitis (P < .00l, P = .001), as well as in IgG levels between periodontitis and severe periodontitis (P = .001). The predominance of IgG in gingival organ culture supernatants and the statistically significant findings that the overall mean levels of IgG between mild gingivitis and periodontitis (P = .014) and between severe periodontitis and periodontitis (P = .001) suggested a possible indicator of periodontal disease. The presence of IgG in gingival organ culture supernatants was shown to be a product of actively secreting plasma cells. The incorporation of radiolabelled amino acids into IgG was noted over a seven-day period with a peak response at day 4-5. The inhibition of IgG synthesis by cyclohexamide confirmed the contention that IgG was a product of de novo synthesis and not serum derived.^ The specificity of immunoglobulins derived from gingival organ cultures were studied using a whole bacterial agglutination test. Oral bacteria frequently cultured from periodontal patients were assessed for their ability to be agglutinated by gingival organ culture supernatants. A positive correlation of antibody titer and severity of disease was seen with five strains of Actinomyces viscosus, two of Actinomyces naeslundii and one Actinomyces israelii. The agglutination of bacteria was shown to be due to the specific interaction of immunoglobulin and cell-wall antigen. ^
Resumo:
BACKGROUND Limited data exist on the longitudinal crestal bone changes around teeth compared with implants in partially edentulous patients. This study sought to compare the 10-year radiographic crestal bone changes (bone level [BL]) around teeth and implants in periodontally compromised (PCPs) and periodontally healthy (PHPs) patients. METHODS A total of 120 patients were evaluated for the radiographic crestal BL around dental implants and adjacent teeth at time of implant crown insertion and at the 10-year follow-up. Sixty patients had a previous history of periodontitis (PCPs), and the remaining 60 were PHPs. In each category (PCP and PHP), two different implant systems were used. The mean BL change at the implant and at the adjacent tooth at the interproximal area was calculated by subtracting the radiographic crestal BL at the time of crown cementation from the radiographic crestal BL at the 10-year follow-up. RESULTS At 10 years after therapy, the survival rate ranged from 80% to 95% for subgroups for implants, whereas it was 100% for the adjacent teeth. In all eight different patient categories evaluated, teeth demonstrated a significantly more stable radiographic BL compared with adjacent dental implants (teeth BL, 0.44 ± 0.23 mm; implant BL, 2.28 ± 0.72 mm; P <0.05). Radiographic BL changes around teeth seemed not to be influenced by the presence or absence of advanced bone loss (≥3 mm) at the adjacent implants. CONCLUSIONS Natural teeth yielded better long-term results with respect to survival rate and marginal BL changes compared with dental implants. Moreover, these findings also extend to teeth with an initial reduced periodontal attachment level, provided adequate periodontal treatment and maintenance are performed. As a consequence, the decision of tooth extraction attributable to periodontal reasons in favor of a dental implant should be carefully considered in partially edentulous patients.
Resumo:
OBJECTIVE This retrospective observational pilot study examined differences in peri-implant bone level changes (ΔIBL) between two similar implant types differing only in the surface texture of the neck. The hypothesis tested was that ΔIBL would be greater with machined-neck implants than with groovedneck implants. METHOD AND MATERIALS 40 patients were enrolled; n = 20 implants with machined (group 1) and n = 20 implants with a rough, grooved neck (group 2), all placed in the posterior mandible. Radiographs were obtained after loading (at 3 to 9 months) and at 12 to 18 months after implant insertion. Case number calculation with respect to ΔIBL was conducted. Groups were compared using a Brunner-Langer model, the Mann-Whitney test, the Wilcoxon signed rank test, and linear model analysis. RESULTS After the 12- to 18-month observation period, mean ΔIBL was -1.11 ± 0.92 mm in group 1 and -1.25 ± 1.23 mm in group 2. ΔIBL depended significantly on time (P < .001), but not on group. In both groups, mean marginal ΔIBL was significantly less than -1.5 mm. Only insertion depth had a significant influence on the amount of periimplant bone loss (P = .013). Case number estimate testing for a difference between group 1 and 2 with a power of 90% revealed a sample size per group of 1,032 subjects. CONCLUSION ΔIBL values indicated that both implant designs fulfilled implant success criteria, and the modification of implant neck texture had no significant influence on ΔIBL.
Resumo:
PURPOSE To evaluate and compare crestal bone level changes and peri-implant status of implant-supported reconstructions in edentulous and partially dentate patients after a minimum of 5 years of loading. MATERIALS AND METHODS All patients who received a self-tapping implant with a microstructured surface during the years 2003 and 2004 at the Department of Prosthodontics, University of Bern, were included in this study. The implant restorations comprised fixed and removable prostheses for partially and completely edentulous patients. Radiographs were taken immediately after surgery, at impression making, and 1 and 5 years after loading. Crestal bone level (BIC) was measured from the implant shoulder to the first bone contact, and changes were calculated over time (ΔBIC). The associations between pocket depth, bleeding on probing (BOP), and ΔBIC were assessed. RESULTS Sixty-one implants were placed in 20 patients (mean age, 62 ± 7 years). At the 5-year follow-up, 19 patients with 58 implants were available. Implant survival was 98.4% (one early failure; one patient died). The average ΔBIC between surgery and 5-year follow-up was 1.5 ± 0.9 mm and 1.1 ± 0.6 mm for edentulous and partially dentate patients, respectively. Most bone resorption (50%, 0.7 mm) occurred during the first 3 months (osseointegration) and within the first year of loading (21%, 0.3 mm). Mean annual bone loss during the 5 years of loading was < 0.12 mm. Mean pocket depth was 2.6 ± 0.7 mm. Seventeen percent of the implant sites displayed BOP; the frequency was significantly higher in women. None of the variables were significantly associated with crestal bone loss. CONCLUSION Crestal bone loss after 5 years was within the normal range, without a significant difference between edentulous and partially dentate patients. In the short term, this implant system can be used successfully for various prosthetic indications.
Resumo:
PURPOSE: The aim of this study was to evaluate the hard and soft tissue parameters around implants supporting overdentures and the possible influence of increased periimplant bone density (IPBD) on implant success. MATERIALS AND METHODS: A total of 44 dental implants placed in the mandible of 12 patients were included in the study. Implants were divided in 2 groups in relation to the optically detected IPBD. Periimplant clinical and radiographic variables were collected over the period of 5 years. RESULTS: Periimplant clinical and radiographic parameters for all implants did not change significantly throughout the observation period (P > 0.05). Significant differences were observed between implants with and without IPBD for periimplant soft tissue parameters and Periotest values (P < 0.05). Implants with and without IPBD at 5-year control showed mean bone loss of 0.04 ± 0.48 mm and 0.55 ± 0.96 mm, respectively (P = 0.026). All density values decreased throughout the observation period, except maximal values for implants with IPBD that overcome the initial values at the 5-year control. CONCLUSIONS: Implants supporting overdentures were clinically successful over the period of follow-up. IPBD may be related to the maintenance of the periimplant bone level.
Resumo:
BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.