953 resultados para Aggregate equilibrium
Resumo:
This paper examines the cyclical regularities of macroeconomic, financial and property market aggregates in relation to the property stock price cycle in the UK. The Hodrick Prescott filter is employed to fit a long-term trend to the raw data, and to derive the short-term cycles of each series. It is found that the cycles of consumer expenditure, total consumption per capita, the dividend yield and the long-term bond yield are moderately correlated, and mainly coincident, with the property price cycle. There is also evidence that the nominal and real Treasury Bill rates and the interest rate spread lead this cycle by one or two quarters, and therefore that these series can be considered leading indicators of property stock prices. This study recommends that macroeconomic and financial variables can provide useful information to explain and potentially to forecast movements of property-backed stock returns in the UK.
Resumo:
In this paper we investigate the equilibrium properties of magnetic dipolar (ferro-) fluids and discuss finite-size effects originating from the use of different boundary conditions in computer simulations. Both periodic boundary conditions and a finite spherical box are studied. We demonstrate that periodic boundary conditions and subsequent use of Ewald sum to account for the long-range dipolar interactions lead to a much faster convergence (in terms of the number of investigated dipolar particles) of the magnetization curve and the initial susceptibility to their thermodynamic limits. Another unwanted effect of the simulations in a finite spherical box geometry is a considerable sensitivity to the container size. We further investigate the influence of the surface term in the Ewald sum-that is, due to the surrounding continuum with magnetic permeability mu(BC)-on the convergence properties of our observables and on the final results. The two different ways of evaluating the initial susceptibility, i.e., (1) by the magnetization response of the system to an applied field and (2) by the zero-field fluctuation of the mean-square dipole moment of the system, are compared in terms of speed and accuracy.
Resumo:
We investigate in detail the initial susceptibility, magnetization curves, and microstructure of ferrofluids in various concentration and particle dipole moment ranges by means of molecular dynamics simulations. We use the Ewald summation for the long-range dipolar interactions, take explicitly into account the translational and rotational degrees of freedom, coupled to a Langevin thermostat. When the dipolar interaction energy is comparable with the thermal energy, the simulation results on the magnetization properties agree with the theoretical predictions very well. For stronger dipolar couplings, however, we find systematic deviations from the theoretical curves. We analyze in detail the observed microstructure of the fluids under different conditions. The formation of clusters is found to enhance the magnetization at weak fields and thus leads to a larger initial susceptibility. The influence of the particle aggregation is isolated by studying ferro-solids, which consist of magnetic dipoles frozen in at random locations but which are free to rotate. Due to the artificial suppression of clusters in ferrosolids the observed susceptibility is considerably lowered when compared to ferrofluids.
Resumo:
Langevin dynamics simulations are used to investigate the equilibrium magnetization properties and structure of magnetic dipolar fluids. The influence of using different boundary conditions are systematically studied. Simulation results on the initial susceptibility and magnetization curves are compared with theoretical predictions. The effect of particle aggregation is discussed in detail by performing a cluster analysis of the microstructure.
Resumo:
The “cotton issue” has been a topic of several academic discussions for trade policy analysts. However the design of trade and agricultural policy in the EU and the USA has become a politically sensitive matter throughout the last five years. This study utilizing the Agricultural Trade Policy Simulation Model (ATPSM) aims to gain insights into the global cotton market, to explain why domestic support for cotton has become an issue, to quantify the impact of the new EU agricultural policy on the cotton sector, and to measure the effect of eliminating support policies on production and trade. Results indicate that full trade liberalization would lead the four West African countries to better terms of trade with the EU. If tariff reduction follows the so-called Swiss formula, world prices would increase by 3.5%.
Resumo:
The Sustainable Value approach integrates the efficiency with regard to environmental, social and economic resources into a monetary indicator. It gained significant popularity as evidenced by diverse applications at the corporate level. However, its introduction as a measure adhering to the strong sustainability paradigm sparked an ardent debate. This study explores its validity as a macroeconomic strong sustainability measure by applying the Sustainable Value approach to the EU-15 countries. Concretely, we assessed environmental, social and economic resources in combination with the GDP for all EU-15 countries from 1995 to 2006 for three benchmark alternatives. The results show that several countries manage to adequately delink resource use from GDP growth. Furthermore, the remarkable difference in outcome between the national and EU-15 benchmark indicates a possible inefficiency of the current allocation of national resource ceilings imposed by the European institutions. Additionally, by using an effects model we argue that the service degree of the economy and governmental expenditures on social protection and research and development are important determinants of overall resource efficiency. Finally, we sketch out three necessary conditions to link the Sustainable Value approach to the strong sustainability paradigm.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
A method for the detection of O+ ion fluxes from topside soundings is described. The shape of the plasma scale-height profile is altered by such flows only at heights near the F2-peak, where ion-neutral drag is large. Model profiles are used to relate changes in scale height to the ratio (φ/φL) where φ is the field-aligned O+ flux (relative to the neutral air) and φL is the limiting value set by frictional drag. Values of (φ/φL) can then be determined to within a few per cent from experimental soundings, using the plasma temperature and its gradient (as deduced from the observed profile) and the MSIS model neutral temperature. It was found that 3700 topside profiles show departures from diffusive equilibrium, out of 10,000 used to obtain the global morphology of (φ/φL) near the sunspot minimum. Results reveal dynamic ion-flow effects such as the transequatorial breeze and the effects of the polar wind and protonospheric replenishment light-ion flows can be inferred.
Resumo:
In this paper an equation is derived for the mean backscatter cross section of an ensemble of snowflakes at centimeter and millimeter wavelengths. It uses the Rayleigh–Gans approximation, which has previously been found to be applicable at these wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random and unpredictable, the authors find from simulations of the aggregation process that their structure is “self-similar” and can be described by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain, a variable describing their mean shape, and two variables describing the shape of the power spectrum. The exponent of the power law is found to be −. In the case of 1-cm snowflakes observed by a 3.2-mm-wavelength radar, the backscatter is 40–100 times larger than that of a homogeneous ice–air spheroid with the same mass, size, and aspect ratio.
Resumo:
A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.
Resumo:
Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel [2014], reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a “moisture memory” effect found in Muller and Bony [2015]. Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 K and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.