1000 resultados para Age, 14C calibrated


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sedimentary sections of three cores from the Celtic margin provide high-resolution records of the terrigenous fluxes during the last glacial cycle. A total of 21 14C AMS dates allow us to define age models with a resolution better than 100 yr during critical periods such as Heinrich events 1 and 2. Maximum sedimentary fluxes occurred at the Meriadzek Terrace site during the Last Glacial Maximum (LGM). Detailed X-ray imagery of core MD95-2002 from the Meriadzek Terrace shows no sedimentary structures suggestive of either deposition from high-density turbidity currents or significant erosion. Two paroxysmal terrigenous flux episodes have been identified. The first occurred after the deposition of Heinrich event 2 Canadian ice-rafted debris (IRD) and includes IRD from European sources. We suggest that the second represents an episode of deposition from turbid plumes, which precedes IRD deposition associated with Heinrich event 1. At the end of marine isotopic stage 2 (MIS 2) and the beginning of MIS 1 the highest fluxes are recorded on the Whittard Ridge where they correspond to deposition from turbidity current overflows. Canadian icebergs have rafted debris at the Celtic margin during Heinrich events 1, 2, 4 and 5. The high-resolution records of Heinrich events 1 and 2 show that in both cases the arrival of the Canadian icebergs was preceded by a European ice rafting precursor event, which took place about 1-1.5 kyr before. Two rafting episodes of European IRD also occurred immediately after Heinrich event 2 and just before Heinrich event 1. The terrigenous fluxes recorded in core MD95-2002 during the LGM are the highest reported at hemipelagic sites from the northwestern European margin. The magnitude of the Canadian IRD fluxes at Meriadzek Terrace is similar to those from oceanic sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dansgaard-Oeschger (D-O) cycles are the most dramatic, frequent, and wide-reaching abrupt climate changes in the geologic record. On Greenland, D-O cycles are characterized by an abrupt warming of 10 ± 5°C from a cold stadial to a warm interstadial phase, followed by gradual cooling before a rapid return to stadial conditions. The mechanisms responsible for these millennial cycles are not fully understood but are widely thought to involve abrupt changes in Atlantic Meridional Overturning Circulation due to freshwater perturbations. Here we present a new, high-resolution multiproxy marine sediment core monitoring changes in the warm Atlantic inflow to the Nordic seas as well as in local sea ice cover and influx of ice-rafted debris. In contrast to previous studies, the freshwater input is found to be coincident with warm interstadials on Greenland and has a Fennoscandian rather than Laurentide source. Furthermore, the data suggest a different thermohaline structure for the Nordic seas during cold stadials in which relatively warm Atlantic water circulates beneath a fresh surface layer and the presence of sea ice is inferred from benthic oxygen isotopes. This implies a delicate balance between the warm subsurface Atlantic water and fresh surface layer, with the possibility of abrupt changes in sea ice cover, and suggests a novel mechanism for the abrupt D-O events observed in Greenland ice cores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution sediment cores from the Vøring Plateau, the North Iceland shelf, and the East Greenland shelf have been studied to investigate the stability of major surface currents in the Nordic Seas during the Holocene. Results from diatom assemblages and reconstructed sea-surface temperatures (SSTs) indicate a division of the Holocene into three periods: the Holocene Climate Optimum (9500-6500 calendar (cal) years BP), the Holocene Transition Period (6500-3000 cal years BP) and the Cool Late Holocene Period (3000-0 cal years BP). The overall climate development is in step with the decreasing insolation on the Northern Hemisphere, but regional differences occur regarding both timing and magnitude of SST changes. Sites under the direct influence of the Norwegian Atlantic Current and the Irminger Current indicate SST cooling of 4-5°C from early Holocene to present, compared to 2°C recorded under the East Greenland Current. Superimposed on the general Holocene cooling trend, there is a high-frequency SST variability, which is in the order of 1-1.5°C for the Vøring Plateau and the East Greenland shelf and 2.5-3°C on the North Iceland shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.