951 resultados para Affinity ligands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three optically active Schiff-base ligands have been prepared by condensation of 2-hydroxyacetophenone with (IR,2R)-(-)-1,2-diaminocyclohexane, (1S,2S)-(-)1,2-diphenylethylenediamine or R-(+)-2,2'-diamino-1,1'-binaphthalene, respectively. The products have been characterized by their IR, H-1- and C-13-NMR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the design of affinity membranes, protein adsorption in membrane affinity chromatography (MAC) was studied by frontal analysis. According to fast mass transfer, small thickness of affinity membranes and high affinity between the protein and the ligand, an ideal adsorption (IA) model was proposed for MAC and was used together with equilibrium-dispersive (E-D) model to describe the adsorption of bovine serum albumin (BSA) onto cellulose diacetate/polyethyleneimine (CA/PEI) blend membranes with and without Cu2+ chelating. E-D model was found to better describe the initial region of experimental breakthrough curves. The influence of axial dispersion was revealed and it showed the importance of design of the module to homogenously distribute feed solution. IA model was found to be better for the whole experimental breakthrough curve. According to it, the capacity of affinity membranes and the specificity of the interaction are of equal importance for the design of affinity membranes. An optimum feed concentration was also found in the operation of MAC. The discrepancy between experimental optimum feed concentrations and predicted ones from IA model may be due to the ignorance of some experimental effects such as axial dispersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iminodiacetic acid (IDA)-type adsorbent is prepared at the one end of a capillary by covalently bonding IDA to the monolithic rods of macroporous poly(glycidyl methacrylate-co-ethylene dimethacrylate). Cu(II) is later introduced to the support via the interaction with IDA. By this means, polymer monolithic immobilized metal affinity chromatography (IMAC) materials are prepared. With such a column, IMAC for on-line concentration and capillary electrophoresis (CE) for the subsequent analysis are hyphenated for the analysis of peptides and proteins. The reproducibility of such a column has been proved good with relative standard deviations (RSDs) of dead time of less than 5% for injection-to-injection and 12% for column-to-column (n = 3). Through application on the analysis of standard peptides and real protein samples, such a technique has shown promising in proteome study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabinoid receptors are members of the large family of G-protein coupled receptors. Two types of cannabinoid receptor have been discovered: CB1 and CB2. CB1 receptors are localised predominantly in the brain whereas CB2 receptors are more abundant in peripheral nervous system cells. CB1 receptors have been related with a number of disorders, including depression, anxiety, stress, schizophrenia, chronic pain and obesity. For this reason, several cannabinoid ligands were developed as drug candidates. Among these ligands, a prominent position is occupied by SR141716 (Rimonabant), which is a pyrazole derivative with inverse agonist activity discovered by Sanofi-Synthelabo in 1994. This compound was marketed in Europe as an anti-obesity drug, but subsequently withdrawn due to its side-effects. Since the relationship between the CB1 receptors’ functional modification, density and distribution, and the beginning of a pathological state is still not well understood, the development of radio-ligands suitable for in vivo PET (Positron Emission Tomography) functional imaging of CB1 receptors remains an important area of research in medicine and drug development. To date, a few radiotracers have been synthesised and tested in vivo, but most of them afforded unsatisfactory brain imaging results. A handful of radiolabelled CB1 PET ligands have also been submitted to clinical trials in humans. In this PhD Thesis the design, synthesis and characterization of three new classes of potential high-affinity CB1 ligands as candidate PET tracers is described.