911 resultados para Adaptive Finite Element Methods
Resumo:
Finite element analysis is a useful tool in understanding how the accommodation system of the eye works. Further to simpler FEA models that have been used hitherto, this paper describes a sensitivity study which aims to understand which parameters of the crystalline lens are key to developing an accurate model of the accommodation system. A number of lens models were created, allowing the mechanical properties, internal structure and outer geometry to be varied. These models were then spun about their axes, and the deformations determined. The results showed the mechanical properties are the critical parameters, with the internal structure secondary. Further research is needed to fully understand how the internal structure and properties interact to affect lens deformation.
Resumo:
Numerical techniques have been finding increasing use in all aspects of fracture mechanics, and often provide the only means for analyzing fracture problems. The work presented here, is concerned with the application of the finite element method to cracked structures. The present work was directed towards the establishment of a comprehensive two-dimensional finite element, linear elastic, fracture analysis package. Significant progress has been made to this end, and features which can now be studied include multi-crack tip mixed-mode problems, involving partial crack closure. The crack tip core element was refined and special local crack tip elements were employed to reduce the element density in the neighbourhood of the core region. The work builds upon experience gained by previous research workers and, as part of the general development, the program was modified to incorporate the eight-node isoparametric quadrilateral element. Also. a more flexible solving routine was developed, and provided a very compact method of solving large sets of simultaneous equations, stored in a segmented form. To complement the finite element analysis programs, an automatic mesh generation program has been developed, which enables complex problems. involving fine element detail, to be investigated with a minimum of input data. The scheme has proven to be versati Ie and reasonably easy to implement. Numerous examples are given to demonstrate the accuracy and flexibility of the finite element technique.