908 resultados para Actor-network Theory
Resumo:
This article focuses on the identification of the number of paths with different lengths between pairs of nodes in complex networks and how these paths can be used for characterization of topological properties of theoretical and real-world complex networks. This analysis revealed that the number of paths can provide a better discrimination of network models than traditional network measurements. In addition, the analysis of real-world networks suggests that the long-range connectivity tends to be limited in these networks and may be strongly related to network growth and organization.
Resumo:
We show that the one-loop effective action at finite temperature for a scalar field with quartic interaction has the same renormalized expression as at zero temperature if written in terms of a certain classical field phi(c), and if we trade free propagators at zero temperature for their finite-temperature counterparts. The result follows if we write the partition function as an integral over field eigenstates (boundary fields) of the density matrix element in the functional Schrodinger field representation, and perform a semiclassical expansion in two steps: first, we integrate around the saddle point for fixed boundary fields, which is the classical field phi(c), a functional of the boundary fields; then, we perform a saddle-point integration over the boundary fields, whose correlations characterize the thermal properties of the system. This procedure provides a dimensionally reduced effective theory for the thermal system. We calculate the two-point correlation as an example.
Resumo:
We study the question of stability of the ground state of a scalar theory which is a generalization of the phi(3) theory and has some similarity to gravity with a cosmological constant. We show that the ground state of the theory at zero temperature becomes unstable above a certain critical temperature, which is evaluated in closed form at high temperature.
Resumo:
The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.
Resumo:
We use the boundary effective theory approach to thermal field theory in order to calculate the pressure of a system of massless scalar fields with quartic interaction. The method naturally separates the infrared physics, and is essentially nonperturbative. To lowest order, the main ingredient is the solution of the free Euler-Lagrange equation with nontrivial (time) boundary conditions. We derive a resummed pressure, which is in good agreement with recent calculations found in the literature, following a very direct and compact procedure.
Resumo:
Spectral changes of Na(2) in liquid helium were studied using the sequential Monte Carlo-quantum mechanics method. Configurations composed by Na(2) surrounded by explicit helium atoms sampled from the Monte Carlo simulation were submitted to time-dependent density-functional theory calculations of the electronic absorption spectrum using different functionals. Attention is given to both line shift and line broadening. The Perdew, Burke, and Ernzerhof (PBE1PBE, also known as PBE0) functional, with the PBE1PBE/6-311++G(2d,2p) basis set, gives the spectral shift, compared to gas phase, of 500 cm(-1) for the allowed X (1)Sigma(+)(g) -> B (1)Pi(u) transition, in very good agreement with the experimental value (700 cm(-1)). For comparison, cluster calculations were also performed and the first X (1)Sigma(+)(g) -> A (1)Sigma(+)(u) transition was also considered.
Resumo:
We study the one-loop low-energy effective action for the higher-derivative superfield gauge theory coupled to chiral matter.
Resumo:
The study of displaced vertices containing two b-jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.
Resumo:
We propose a field theory model for dark energy and dark matter in interaction. Comparing the classical solutions of the field equations with the observations of the CMB shift parameter, baryonic acoustic oscillations, lookback time, and the Gold supernovae sample, we observe a possible interaction between dark sectors with energy decay from dark energy into dark matter. The observed interaction provides an alleviation to the coincidence problem.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
The nuclear gross theory, originally formulated by Takahashi and Yamada (1969 Prog. Theor. Phys. 41 1470) for the beta-decay, is applied to the electronic-neutrino nucleus reactions, employing a more realistic description of the energetics of the Gamow-Teller resonances. The model parameters are gauged from the most recent experimental data, both for beta(-)-decay and electron capture, separately for even-even, even-odd, odd-odd and odd-even nuclei. The numerical estimates for neutrino-nucleus cross-sections agree fairly well with previous evaluations done within the framework of microscopic models. The formalism presented here can be extended to the heavy nuclei mass region, where weak processes are quite relevant, which is of astrophysical interest because of its applications in supernova explosive nucleosynthesis.
Resumo:
Within the superfield approach, we prove the absence of UV/IR mixing in the three-dimensional noncommutative supersymmetric Maxwell-Chern-Simons theory at any loop order and demonstrate its finiteness in one, three, and higher loop orders.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.