910 resultados para Accident types.
Resumo:
Résumé Introduction et but: Les accidents vasculaires cérébraux (AVC) ischémiques thalamiques sont traditionnellement classés en quatre territoires : antérieur (polaire ou tubérothalamique), paramédian (ou thalamo-perforant), inférolatéral (ou thalamo-genouillé) et postérieur. Le but de cette thèse est de déterminer, à l'aide des techniques d'imagerie actuelles, si cette classification est appropriée ou si il existe d'autres territoires à la jonction entre les précédents territoires. Méthode: Nous avons étudié les 3712 patients hospitalisés pour un premier AVC dans le service de neurologie du CHUV à Lausanne et inclus dans le « Lausanne Stroke Registry » entre 1990 et 2002. Parmi les 71 patients avec un infarctus thalamique confirmé par IRM, nous avons sélectionné tous les patients présentant un AVC hors des quatre territoires classiques en étudiant leur tableau clinique, étiologique et radiologique. Résultats: 21 patients (30% des patients avec AVC thalamiques) avaient un AVC hors des quatre territoires classiques, permettant de délimiter trois nouveaux territoires. 1) territoire anteromédian (9 patients (13%)), atteignant la partie postérieure du territoire antérieur et la partie antérieure du territoire paramédian, avec en premier lieu des troubles cognitifs (principalement troubles dysexecutifs, amnésie antérograde ainsi qu'une aphasie dans les lésions gauches). L'étiologie principale était cardio-embolique. 2) territoire central (4 patients (6%)), atteignant la partie centrale du thalamus provoquant différents signes neurologiques et neuropsychologiques, reflétant l'atteinte de différentes structures. La cause la plus fréquente était microangiopathique. 3) territoire posterolateral (8 patients (8%)), atteignant la partie postérieure du territoire inférolatéral et la partie antérieure du territoire postérieur provoquant en premier lieu une hémihypesthesie mais aussi une hémiataxie ainsi que des troubles dysexécutifs et une aphasie dans les lésions gauches. Les étiologies les plus fréquentes étaient artério-artérielle et microangiopathique. Conclusions: Nous décrivons trois nouvelles variantes topographiques d'AVC thalamiques avec des tableaux cliniques et étiologiques distincts. Nous postulons que ces variantes sont le résultat de variations de la vascularisation thalamique ou reflètent une atteinte ischémique jonctionnelle. Abstract Background and Purpose -Thalamic infarcts have traditionally been classified into 4 territories: anterior, paramedian, inferolateral, and posterior. The purpose of this study was to review this classical versus variant distribution in patients with thalamic stroke. Methods - We reviewed all patients with a first clinical stroke included in the Lausanne Stroke Registry between 1990 and 2002. Among 71 patients with an acute stroke isolated to the thalamus confirmed by MRI, we selected all patients with lesions outside the classical territories and studied their clinical, etiological, and radiological features. Results - A total of 21 patients (30% of all thalamic stroke patients) showed infarction outside the classical territories, allowing us to delineate 3 variant distributions: (1) Anteromedian territory (9 patients [13%]) involving anterior and paramedian territories, with predominantly cognitive impairment, including executive dysfunction, anterograde amnesia, and aphasia in left-sided or bilateral lesions. The most frequent stroke mechanism was cardiac embolism. (2) Central territory (4 patients [6%]), with lesions on the central part of the thalamus, resulting in a variety of neurological and neuropsychological signs, reflecting the involvement of several adjacent structures. Microangiopathy was the most frequent etiology. (3) Posterolateral territory (8 patients [11%]), involving inferolateral and posterior territories, with hemihypesthesia as the most frequent manifestation, followed by hemiataxia, executive dysfunction, and aphasia in left-sided lesions. Artery-to-artery embolism and microangiopathy were the main stroke mechanisms. Conclusions - We describe 3 variant topographic patterns of thalamic infarction with distinct manifestations and etiologies. We postulate that these infarcts are the result of a variation in thalamic arterial supply or reflect borderzone ischemia.
Resumo:
Background: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. Mehtods: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from ¿50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. Results: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. Conclusions: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.
Resumo:
PURPOSE: To localize collagen types I, III, and IV, laminin and fibronectin in the anterior human lens capsule. MATERIAL AND METHODS: Twenty-one anterior capsules were sampled by capsulorhexis during extracapsular cataract extraction (mean age 71.5). All capsules were labelled by an immunostaining specific for each antibodies. Immunostaining of four capsules was revealed with immunoperoxydase and seventeen using indirect immunofluorescence. RESULTS: Labelling of collagen types I and III was observed throughout the entire thickness of the capsule for each technique, the strongest labelling was found in the base of the epithelial cells with immunofluorescence. Collagen type IV was observed at the base of the epithelial cells whichever technique was used. Laminin could be detected in the inner layer of the capsule, using immunoperoxydase or immunofluorescence. No specific labelling was found for fibronectin using the two techniques. CONCLUSIONS: Different kinds of collagens have been found in capsules, more particularly the type III. The latter does not appear on other ocular basement membrane. Because of this uneven distribution in the capsule's thickness, each collagen might have a specific function.
Resumo:
Normally either the Güntelberg or Davies equation is used to predict activity coefficients of electrolytes in dilute solutions when no betterequation is available. The validity of these equations and, additionally, of the parameter-free equation used in the Bates-Guggenheim convention for activity coefficients were tested with experimentally determined activity coefficients of LaCl3, CaCl2, SrCl2 and BaCl2 in aqueous solutions at 298.15 K. The experimentalactivity coefficients of these electrolytes can be usually reproduced within experimental error by means of a two-parameter equation of the Hückel type. The best Hückel equations were also determined for all electrolytes considered. The data used in the calculations of this study cover almost all reliable galvanic cell results available in the literature for the electrolytes considered. The results of the calculations reveal that the parameter-free activity coefficient equations can only be used for very dilute electrolyte solutions in thermodynamic studies
Resumo:
Root systems consist of different root types (RTs) with distinct developmental and functional characteristics. RTs may be individually reprogrammed in response to their microenvironment to maximize adaptive plasticity. Molecular understanding of such specific remodeling-although crucial for crop improvement-is limited. Here, RT-specific transcriptomes of adult rice crown, large and fine lateral roots were assessed, revealing molecular evidence for functional diversity among individual RTs. Of the three rice RTs, crown roots displayed a significant enrichment of transcripts associated with phytohormones and secondary cell wall (SCW) metabolism, whereas lateral RTs showed a greater accumulation of transcripts related to mineral transport. In nature, arbuscular mycorrhizal (AM) symbiosis represents the default state of most root systems and is known to modify root system architecture. Rice RTs become heterogeneously colonized by AM fungi, with large laterals preferentially entering into the association. However, RT-specific transcriptional responses to AM symbiosis were quantitatively most pronounced for crown roots despite their modest physical engagement in the interaction. Furthermore, colonized crown roots adopted an expression profile more related to mycorrhizal large lateral than to noncolonized crown roots, suggesting a fundamental reprogramming of crown root character. Among these changes, a significant reduction in SCW transcripts was observed that was correlated with an alteration of SCW composition as determined by mass spectrometry. The combined change in SCW, hormone- and transport-related transcript profiles across the RTs indicates a previously overlooked switch of functional relationships among RTs during AM symbiosis, with a potential impact on root system architecture and functioning.