951 resultados para Ab Initio Density Functional Calculations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zigzag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin S consistent with Lieb’s theorem for bipartite lattices. Triangles have a finite S for all sizes whereas hexagons have S=0 and develop local moments above a critical size of ≈1.5  nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ab initio quantum transport calculations show that short NiO chains suspended in Ni nanocontacts present a very strong spin-polarization of the conductance.The generalized gradient approximation we use here predicts a similar polarization of the conductance as the one previously computed with non-local exchange, confirming the robustness of the result. Their use as nanoscopic spinvalves is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The appearance of ferromagnetic correlations among π electrons of phenanthrene (C14H10) molecules in the herringbone structure is proven for K doped clusters both by ab initio quantum-chemistry calculations and by the direct solution of the many-body Pariser-Parr-Pople Hamiltonian. Magnetic ground states are predicted for one or three additional electrons per phenanthrene molecule. These results are a consequence of the small overlap between the lowest unoccupied molecular orbitals (and lowest unoccupied molecular orbitals + 1) of neutral neighboring phenanthrene molecules, which makes the gain in energy by delocalization similar to the corresponding increase due to the Coulomb interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electronic structure of a heterojunction made of two monolayers of MoS2 and WS2. Our first-principles density functional calculations show that, unlike in the homogeneous bilayers, the heterojunction has an optically active band gap, smaller than the ones of MoS2 and WS2 single layers. We find that the optically active states of the maximum valence and minimum conduction bands are localized on opposite monolayers, and thus the lowest energy electron-holes pairs are spatially separated. Our findings portray the MoS2-WS2 bilayer as a prototypical example for band-gap engineering of atomically thin two-dimensional semiconducting heterostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform density functional calculations to investigate the structure of the intermetallic alloy FeRh under epitaxial strain. Bulk FeRh exhibits a metamagnetic transition from a low-temperature antiferromagnetic (AFM) phase to a ferromagnetic phase at 350 K, and its strain dependence is of interest for tuning the transition temperature to the room-temperature operating conditions of typical memory devices. We find an unusually strong dependence of the structural energetics on the choice of exchange-correlation functional, with the usual local density approximation yielding the wrong ground-state structure, and generalized gradient (GGA) extensions being in better agreement with the bulk experimental structure. Using the GGA we show the existence of a metastable face-centered-cubic-like AFM structure that is reached from the ground-state body-centered-cubic-like AFM structure by following the epitaxial Bain path. We show that the behavior is well described using nonlinear elasticity theory, which captures the softening and eventual sign change of the orthorhombic shear modulus under compressive strain, consistent with this structural instability. Finally, we predict the existence of an additional unit-cell-doubling lattice instability, which should be observable at low temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the magnetic properties of graphenic nanostructures is instrumental in future spintronics applications. These magnetic properties are known to depend crucially on the presence of defects. Here we review our recent theoretical studies using density functional calculations on two types of defects in carbon nanostructures: Substitutional doping with transition metals, and sp$^3$-type defects created by covalent functionalization with organic and inorganic molecules. We focus on such defects because they can be used to create and control magnetism in graphene-based materials. Our main results are summarized as follows: i)Substitutional metal impurities are fully understood using a model based on the hybridization between the $d$ states of the metal atom and the defect levels associated with an unreconstructed D$_{3h}$ carbon vacancy. We identify three different regimes, associated with the occupation of distinct hybridization levels, which determine the magnetic properties obtained with this type of doping; ii) A spin moment of 1.0 $\mu_B$ is always induced by chemical functionalization when a molecule chemisorbs on a graphene layer via a single C-C (or other weakly polar) covalent bond. The magnetic coupling between adsorbates shows a key dependence on the sublattice adsorption site. This effect is similar to that of H adsorption, however, with universal character; iii) The spin moment of substitutional metal impurities can be controlled using strain. In particular, we show that although Ni substitutionals are non-magnetic in flat and unstrained graphene, the magnetism of these defects can be activated by applying either uniaxial strain or curvature to the graphene layer. All these results provide key information about formation and control of defect-induced magnetism in graphene and related materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the effect of electric fields on the physical and chemical properties of two-dimensional (2D) nanostructures is instrumental in the design of novel electronic and optoelectronic devices. Several of those properties are characterized in terms of the dielectric constant which play an important role on capacitance, conductivity, screening, dielectric losses and refractive index. Here we review our recent theoretical studies using density functional calculations including van der Waals interactions on two types of layered materials of similar two-dimensional molecular geometry but remarkably different electronic structures, that is, graphene and molybdenum disulphide (MoS2). We focus on such two-dimensional crystals because of they complementary physical and chemical properties, and the appealing interest to incorporate them in the next generation of electronic and optoelectronic devices. We predict that the effective dielectric constant (ε) of few-layer graphene and MoS2 is tunable by external electric fields (E ext). We show that at low fields (E ext < 0.01 V/Å) ε assumes a nearly constant value ∼4 for both materials, but increases at higher fields to values that depend on the layer thickness. The thicker the structure the stronger is the modulation of ε with the electric field. Increasing of the external field perpendicular to the layer surface above a critical value can drive the systems to an unstable state where the layers are weakly coupled and can be easily separated. The observed dependence of ε on the external field is due to charge polarization driven by the bias, which show several similar characteristics despite of the layer considered. All these results provide key information about control and understanding of the screening properties in two-dimensional crystals beyond graphene and MoS2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light absorption of alpha-glycine crystals grown by slow evaporation at room temperature was measured, indicating a 5.11 +/- 0.02 eV energy band gap. Structural, electronic, and optical absorption properties of alpha-glycine crystals were obtained by first-principles quantum mechanical calculations using density functional theory within the generalized gradient approximation in order to understand this result. To take into account the contribution of core electrons, ultrasoft and norm-conserving pseudopotentials, as well as an all electron approach were considered to compute the electronic density of states and band structure of alpha-glycine crystals. They exhibit three indirect energy band gaps and one direct Gamma-Gamma energy gap around 4.95 eV. The optical absorption related to transitions between the top of the valence band and the bottom of the conduction band involves O 2p valence states and C, O 2p conduction states, with the carboxyl group contributing significantly to the origin of the energy band gap. The calculated optical absorption is highly dependent on the polarization of the incident radiation due to the spatial arrangement of the dipolar glycine molecules; in the case of a polycrystalline sample, the first-principles calculated optical absorption is in good agreement with the measurement when a rigid energy shift is applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we employ the state-of-the-art pseudopotential method, within a generalized gradient approximation to the density functional theory, combined with a recently developed method for the calculation of HREELS spectra to study a series of different proposed models for carbon incorporation on the silicon (001) surface. A fully discussion on the geometry, energetics and specially the comparison between experimental and theoretical STM images and electron energy loss spectra indicate that the Si(100)-c(4 x 4) is probably induced by Si-C surface dinners, in agreement with recent experimental findings. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density functional theory calculations were used to investigate the mechanisms of NO-carbon and N2O-carbon reactions. It was the first time that the importance of surface nitrogen groups was addressed in the kinetic behaviors of the NO-carbon reaction. It was found that the off-plane nitrogen groups that are adjacent to the zigzag edge sites and in-plane nitrogen groups that are located on the armchair sites make the bond energy of oxygen desorption even ca. 20% lower than that of the off-plane epoxy group adjacent to zigzag edge sites and in-plane o-quinone oxygen atoms on armchair sites; this may explain the reason why the experimentally obtained activation energy of the NO-carbon reaction is ca. 20% lower than that of the O-2-carbon reaction over 923 K. A higher ratio of oxygen atoms can be formed in the N2O-carbon reaction, because of the lower dissociation energy of N2O, which results in a higher ratio of off-plane epoxy oxygen atoms. The desorption energy of semiquinone with double adjacent off-plane oxygen groups is ca. 20% less than that of semiquinone with only one adjacent off-plane oxygen group. This may be the reason why the activation energy of N2O is also ca. 20% less than that of the O-2-carbon reaction. The new mechanism can also provide a good qualitative comparison for the relative reaction rates of NO-, N2O-, and O-2-carbon reactions. The anisotropic characters of these gas-carbon reactions can also be well explained.