982 resultados para AUTO-COMBUSTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ions generated during combustion have been used in three ways to give qualitative combustion information. Langmuir type probes have been inserted into the combustion chamber opposite the spark plug location. The centre electrode of the sparking plug itself has been used to produce an ionisation signal from the slightly ionised gases remaining after the flame front has departed. The spark discharge at ignition time has been used as an anemometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In deriving the flamelet model for nonpremixed combustion certain terms, but not the unsteady term, are assumed to be negligible. This results in a relation between all reacting scalars and the mixture fraction as independent variable. An ideal test of the flamelet assumption can be based on direct numerical simulation (DNS) data, if all reacting scalars are conditioned on mixture fraction and conditional moments are evaluated. The fundamental assumption of the flamelet model are unwillingly justified. The unsteady and steady formulations of the same equations are compared and found that unsteadiness is important in an unsteady simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and theoretical investigation of premixed turbulent combustion in an engine simulator is presented. The distribution of hydroxyl radicals formed in the combustion of propane/air mixtures was visualized by 2D-LIF and used to monitor the progress of the combustion process. For stoichiometric mixtures, images showed a continuous wrinkled flame front, while in lean (λ=1.5) mixtures, local flame extinction was observed as discontinuities in the reaction zone. A bright active reaction zone was still observed in flame inlets and closed concave structures. The effects of self-absorption and of collisional quenching on the fluorescence signal are considered and appear to have only a minor net influence on the shape and width of the flame front. The images are evaluated and interpreted in terms of the Lewis number effect and the laminar flamelet model. Analysis was performed by determining the contour lines of the images (specifically, the ratios of average maximum to equilibrium OH concentration) and comparing with corresponding ratios from unstrained flame simulations. The results show that although the degree of turbulence is not high enough for straining effects to be important, flamelet curvature does play a significant role in the combustion of lean mixtures; this is manifested by a mean effective flame velocity that is less than the laminar burning velocity. © 1991 Combustion Institute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A type of adaptive, closed-loop controllers known as self-tuning regulators present a robust method of eliminating thermoacoustic oscillations in modern gas turbines. These controllers are able to adapt to changes in operating conditions, and require very little pre-characterisation of the system. One piece of information that is required, however, is the sign of the system's high frequency gain (or its 'instantaneous gain'). This poses a problem: combustion systems are infinite-dimensional, and so this information is never known a priori. A possible solution is to use a Nussbaum gain, which guarantees closed-loop stability without knowledge of the sign of the high frequency gain. Despite the theory for such a controller having been developed in the 1980s, it has never, to the authors' knowledge, been demonstrated experimentally. In this paper, a Nussbaum gain is used to stabilise thermoacoustic instability in a Rijke tube. The sign of the high frequency gain of the system is not required, and the controller is robust to large changes in operating conditions - demonstrated by varying the length of the Rijke tube with time. Copyright © 2008 by Simon J. Illingworth & Aimee S. Morgans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general equation for a variance parameter, appearing as a crucial quantity in a simple algebraic expression for the mean chemical rate, is derived. This derivation is based on a flamelet approach to model a turbulent premixed flame, for high but finite values of the Damköhler number. Application of this equation to the case of a planar turbulent flame normal to the oncoming flow of reactants gives good agreement with DNS data corresponding to three different values of the Damköhler number and two values of the heat release parameter. © 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of turbulent Reynolds number on the statistical behaviour of the displacement speed have been studied using three-dimensional Direct Numerical Simulation of statistically planar turbulent premixed flames. The probability of finding negative values of the displacement speed is found to increase with increasing turbulent Reynolds number when the Damkhler number is held constant. It has been shown that the statistical behaviour of the Surface Density Function, and its strain rate and curvature dependence, plays a key role in determining the response of the different components of displacement speed. Increasing the turbulent Reynolds number is shown to reduce the strength of the correlations between tangential strain rate and dilatation rate with curvature, although the qualitative nature of the correlations remains unaffected. The dependence of displacement speed on strain rate and curvature is found to weaken with increasing turbulent Reynolds number when either Damkhler or Karlovitz number is held constant, but the qualitative nature of the correlation remains unaltered. The implications of turbulent Reynolds number effects in the context of Flame Surface Density (FSD) modelling have also been addressed, with emphasis on the influence of displacement speed on the curvature and propagation terms in the FSD balance equation. © 2011 Nilanjan Chakraborty et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants. © 2010 Springer Science+Business Media B.V.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: