978 resultados para AMMONIUM-NITRATE
Resumo:
This paper describes a new bio-indicator method for assessing wetland ecosystem health: as such, the study is particularly relevant to current legislation such as the EU Water Framework Directive, which provides a baseline of the current status Of Surface waters. Seven wetland sites were monitored across northern Britain, with model construction data for predicting, eco-hydroloplical relationships collected from five sites during 1999, Two new sites and one repeat site were monitored during 2000 to provide model test data. The main growing season for the vegetation, and hence the sampling period, was May-August during both years. Seasonal mean concentrations of nitrate (NO3-) in surface and soil water samples during 1999 ranged from 0.01 to 14.07 mg N 1(-1), with a mean value of 1.01 mg N 1(-1). During 2000, concentrations ranged from trace level (<0.01 m- N 1(-1)) to 9.43 mg N 1(-1), with a mean of 2.73 mg N 1(.)(-1) Surface and soil-water nitrate concentrations did not influence plant species composition significantly across representative tall herb fen and mire communities. Predictive relationships were found between nitrate concentrations and structural characteristics of the wetland vegetation, and a model was developed which predicted nitrate concentrations from measures of plant diversity, canopy structure and density of reproductive structures. Two further models, which predicted stem density and density of reproductive structures respectively, utilised nitrate concentration as one of the independent predictor variables. Where appropriate, the models were tested using data collected during 2000. This approach is complementary to species-based monitoring, representing a useful and simple too] to assess ecological status in target wetland systems and has potential for bio-indication purposes.
Resumo:
Determining the degree of nitrate pollution in Chalk groundwater is difficult without a clear understanding of concentrations naturally present. In the UK, a general shortage of long-term records of nitrate concentrations in Chalk groundwater prevents a full quantification of baseline concentrations. This paper presents late nineteenth and early twentieth century data on nitrate concentrations in Chalk groundwater in south Dorset, UK and compares them with corresponding data for the last 25 years. The nitrate record is instructive in (1) providing an insight into the baseline nitrate concentration of groundwater; (2) defining the level of nitrate pollution in potable supplies from the Chalk aquifer; and (3) identifying the long-term variations in local nitrate concentrations. Over a period exceeding 100 years mean nitrate concentrations increased from 1.04 mg NO3-N l(-1) to 6.37 mg NO3-N l(-1). Anthropogenic modification of the local groundwater composition is not evident in the early nitrate record. Nitrate data throughout this early period reflect natural background concentrations of approximately I mg NO3-N l(-1) Intensified fertilser use and increased livestock numbers are suggested as the fundamental cause of the rise in nitrate concentrations. The implications of the nitrate record for regional hydrogeological processes are discussed. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sorghum (Sorghum bicolor) was grown for 40 days in. rhizocylinder (a growth container which permitted access to rh zosphere and nonrhizosphere soil), in two soils of low P status. Soils were fertilized with different rates of ammonium and nitrate and supplemented with 40 mg phosphorus (P) kg(-1) and inoculated with either Glomus mosseae (Nicol. and Gerd.) or nonmycorrhizal root inoculum.. N-serve (2 mg kg(-1)) was added to prevent nitrification. At harvest, soil from around the roots was collected at distances of 0-5, 5-10, and 10-20 mm from the root core which was 35 mm diameter. Sorghum plants, with and without mycorrhiza, grew larger with NH4+ than with NO3- application. After measuring soil pH, 4 3 suspensions of the same sample were titrated against 0.01 M HCl or 0.01 M NaOH until soil pH reached the nonplanted pH level. The acid or base requirement for each sample was calculated as mmol H+ or OFF kg(-1) soil. The magnitude of liberated acid or base depended on the form and rate of nitrogen and soil type. When the plant root was either uninfected or infected with mycorrhiza., soil pH changes extended up to 5 mm from the root core surface. In both soils, ammonium as an N source resulted in lower soil pH than nitrate. Mycorrhizal (VAM) inoculation did not enhance this difference. In mycorrhizal inoculated soil, P depletion extended tip to 20 mm from the root surface. In non-VAM inoculated soil P depletion extended up to 10 mm from the root surface and remained unchanged at greater distances. In the mycorrhizal inoculated soils, the contribution of the 0-5 mm soil zone to P uptake was greater than the core soil, which reflects the hyphal contribution to P supply. Nitrogen (N) applications that caused acidification increased P uptake because of increased demand; there is no direct evidence that the increased uptake was due to acidity increasing the solubility of P although this may have been a minor effect.
Resumo:
Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.
Resumo:
We investigated diurnal nitrate (NO3-) concentration variability in the San Joaquin River using an in situ optical NO3- sensor and discrete sampling during a 5-day summer period characterized by high algal productivity. Dual NO3- isotopes (delta N-15(NO3) and delta O-18(NO3)) and dissolved oxygen isotopes (delta O-18(DO)) were measured over 2 days to assess NO3- sources and biogeochemical controls over diurnal time-scales. Concerted temporal patterns of dissolved oxygen (DO) concentrations and delta O-18(DO) were consistent with photosynthesis, respiration and atmospheric O-2 exchange, providing evidence of diurnal biological processes independent of river discharge. Surface water NO3- concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5-day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of delta N-15(NO3) and delta O-18(NO3) isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3- variability in the San Joaquin River during the study. The lack of a clear explanation for NO3- variability likely reflects a combination of riverine biological processes and time-varying physical transport of NO3- from upstream agricultural drains to the mainstem San Joaquin River. The application of an in situ optical NO3- sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
Resumo:
Intensification of crop production in the mid-hills of Nepal has led to concerns that nitrogen loss by leaching may increase. This study estimated the amount of N leached during two years from rainfed terraces (bari-land) at three locations in Nepal. Maize or upland rice grown in the monsoon season was given either no nutrient inputs or inputs via either nitrogen fertilizer or farmyard manure. Nitrate concentration in soil solution was measured regularly with porous ceramic cup samplers and drainage estimated from a simple soil water balance. Estimated losses of nitrogen by leaching ranged from 0 to 63.5 kg N ha(-1) depending on location and the form of nitrogen applied. Losses from plots receiving no nutrient inputs were generally small (range: 0-35 kg N ha(-1)) and losses from plots where nitrogen was applied as manure (range: 2-41 kg N ha(-1)) were typically half those from plots with nitrogen applied as fertilizer. Losses during the post-monsoon crops of finger millet were small (typically <5% of total loss) although losses from the one site with blackgram were larger (about 13%). The highest concentrations of nitrate in solution were measured early in the season as the monsoon rains began and immediately following fertilizer applications. Leaching losses are likely to be minimised if manure is applied as a basal nutrient dressing followed by fertilizer nitrogen later in the season.
Resumo:
Stream-water flows and in-stream nitrate and ammonium concentrations in a small (36.7 ha) Atlantic Forest catchment were simulated using the Integrated Nitrogen in CAtchments (INCA) model version 1.9.4. The catchment, at Cunha, is in the Serra do Mar State Park, SE Brazil and is nearly pristine because the nearest major conurbations, Sao Paulo and Rio, are some 450 km distant. However, intensive farming may increase nitrogen (N) deposition and there are growing pressures for urbanisation. The mean-monthly discharges and NO3-N concentration dynamics were simulated adequately for the calibration and validation periods with (simulated) loss rates of 6.55 kg.ha(-1) yr(-1) for NO3-N and 3.85 kg.ha(-1) yr(-1) for NH4-N. To investigate the effects of elevated levels of N deposition in the future, various scenarios for atmospheric deposition were simulated; the highest value corresponded to that in a highly polluted area of Atlantic Forest in Sao Paulo City. It was found that doubling the atmospheric deposition generated a 25% increase in the N leaching rate, while at levels approaching the highly polluted Sao Paulo deposition rate, five times higher than the current rate, leaching increased by 240%, which would create highly eutrophic conditions, detrimental to downstream water quality. The results indicate that the INCA model can be useful for estimating N concentration and fluxes for different atmospheric deposition rates and hydrological conditions.
Resumo:
Plant root mucilages contain powerful surfactants that will alter the interaction of soil solids with water and ions, and the rates of microbial processes. The lipid composition of maize, lupin and wheat root mucilages was analysed by thin layer chromatography and gas chromatography-mass spectrometry. A commercially available phosphatidylcholine (lecithin), chemically similar to the phospholipid surfactants identified in the mucilages, was then used to evaluate its effects on selected soil properties. The lipids found in the mucilages were principally phosphatidylcholines, composed mainly of saturated fatty acids, in contrast to the lipids extracted from root tissues. In soil at low tension, lecithin reduced the water content at any particular tension by as much as 10 and 50% in soil and acid-washed sand, respectively. Lecithin decreased the amount of phosphate adsorption in soil and increased the phosphate concentration in solution by 10%. The surfactant also reduced net rates of ammonium consumption and nitrate production in soil. These experiments provide the first evidence we are aware of that plant-released surfactants will significantly modify the biophysical environment of the rhizosphere.
Resumo:
The spatial and temporal dynamics in the stream water NO3-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byrans Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed tinder the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO3-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distrubuted catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO3-N patterns at large spatial (> 300 km(2)) and temporal (>= monthly) scales using available national datasets.
Resumo:
The Integrated Catchment Model of Nitrogen (INCA-N) was applied to the Lambourn and Pang river-systems to integrate current process-knowledge and available-data to test two hypotheses and thereby determine the key factors and processes controlling the movement of nitrate at the catchment-scale in lowland, permeable river-systems: (i) that the in-stream nitrate concentrations were controlled by two end-members only: groundwater and soil-water, and (ii) that the groundwater was the key store of nitrate in these river-systems. Neither hypothesis was proved true or false. Due to equifinality in the model structure and parameters at least two alternative models provided viable explanations for the observed in-stream nitrate concentrations. One model demonstrated that the seasonal-pattern in the stream-water nitrate concentrations was controlled mainly by the mixing of ground- and soil-water inputs. An alternative model demonstrated that in-stream processes were important. It is hoped further measurements of nitrate concentrations made in the catchment soil- and ground-water and in-stream may constrain the model and help determine the correct structure, though other recent studies suggest that these data may serve only to highlight the heterogeneity of the system. Thus when making model-based assessments and forecasts it is recommend that all possible models are used, and the range of forecasts compared. In this study both models suggest that cereal production contributed approximately 50% the simulated in-stream nitrate toad in the two catchments, and the point-source contribution to the in-stream load was minimal. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.
Resumo:
The kinetics of reactive uptake of gaseous N2O5 on sub-micron aerosol particles composed of aqueous ammonium sulfate, ammonium hydrogensulfate and sodium nitrate has been investigated. Uptake was measured in a laminar flow reactor, coupled with a differential mobility analyser (DMA) to obtain the aerosol size distribution, with N2O5 detection using NO chemiluminescence. FTIR spectroscopy was used to obtain information about the composition and water content of the aerosol particles under the conditions used in the kinetic measurements. The aerosols were generated by the nebulisation of aqueous salt solutions. The uptake coefficient on the sulfate salts was in the range [gamma]=0.0015 to 0.033 depending on temperature, humidity and phase of the aerosol. On sodium nitrate aerosols the values were much lower, [gamma]<0.001, confirming the inhibition of N2O5 hydrolysis by nitrate ions. At high humidity (>50% r.h.) the uptake coefficient on liquid sulfate aerosols is independent of water content, but at lower humidity, especially below the efflorescence point, the reactivity of the aerosol declines, correlating with the lower water content. The lower uptake rate on solid aerosols may be due to limitations imposed by the liquid volume in the particles. Uptake on sulfate aerosols showed a negative temperature dependence at T>290 K but no significant temperature dependence at lower temperatures. The results are generally consistent with previous models of N2O5 hydrolysis where the reactive intermediate is NO2+ produced by autoionisation of nitrogen pentoxide in the condensed phase.
Resumo:
A new layered ammonium manganese(II) diphosphate, (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)], has been synthesised under solvothermal conditions at 433 K in ethylene glycol and the structure determined at 293 K using single-crystal X-ray diffraction data (M-r = 584.82, monoclinic, space group P2(1)/a, a = 9.4610( 8), b = 8.3565( 7), c = 9.477(1) Angstrom, beta = 99.908(9) degrees, V = 738.07 Angstrom(3), Z = 2, R = 0.0351 and R-w = 0.0411 for 1262 observed data (I > 3(sigma(I))). The structure consists of chains of cis- and trans-edge sharing MnO6 octahedra linked via P2O7 units to form layers of formula [Mn3P4O14(H2O)(2)](2-) in the ab plane. Ammonium ions lie between the manganese-diphosphate layers. A network of interlayer and ammonium-layer based hydrogen bonding holds the structure together. Magnetic measurements indicate Curie - Weiss behaviour above 30 K with mu(eff) = 5.74(1) mu(B) and theta = -23(1) K, consistent with the presence of high-spin Mn2+ ions and antiferromagnetic interactions. However, the magnetic data reveal a spontaneous magnetisation at 5 K, indicating a canting of Mn2+ moments in the antiferromagnetic ground state. On heating (NH4)(2)[Mn-3(P2O7)(2)(H2O)(2)] in water at 433 K under hydrothermal conditions, Mn-5(HPO4)(2)(PO4)(2).4H(2)O, synthetic hureaulite, is formed.