975 resultados para AMINO ACID SEQUENCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of [1-13C]glucose in Pisolithus tinctorius cv Coker & Couch, in uninoculated seedlings of Eucalyptus globulus bicostata ex Maiden cv Kirkp., and in the E. globulus-P. tinctorius ectomycorrhiza was studied using nuclear magnetic resonance spectroscopy. In roots of uninoculated seedlings, the 13C label was mainly incorporated into sucrose and glutamine. The ratio (13C3 + 13C2)/13C4 of glutamine was approximately 1.0 during the time-course experiment, indicating equivalent contributions of phosphoenolpyruvate carboxylase and pyruvate dehydrogenase to the production of α-ketoglutarate used for synthesis of this amino acid. In free-living P. tinctorius, most of the 13C label was incorporated into mannitol, trehalose, glutamine, and alanine, whereas arabitol, erythritol, and glutamate were weakly labeled. Amino acid biosynthesis was an important sink of assimilated 13C (43%), and anaplerotic CO2 fixation contributed 42% of the C flux entering the Krebs cycle. In ectomycorrhizae, sucrose accumulation was decreased in the colonized roots compared with uninoculated control plants, whereas 13C incorporation into arabitol and erythritol was nearly 4-fold higher in the symbiotic mycelium than in the free-living fungus. It appears that fungal utilization of glucose in the symbiotic state is altered and oriented toward the synthesis of short-chain polyols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the latter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hy-droxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutron scattering experiments are used to determine scattering profiles for aqueous solutions of hydrophobic and hydrophilic amino acid analogs. Solutions of hydrophobic solutes show a shift in the main diffraction peak to smaller angle as compared with pure water, whereas solutions of hydrophilic solutes do not. The same difference for solutions of hydrophobic and hydrophilic side chains is also predicted by molecular dynamics simulations. The neutron scattering curves of aqueous solutions of hydrophobic amino acids at room temperature are qualitatively similar to differences between the liquid molecular structure functions measured for ambient and supercooled water. The nonpolar solute-induced expansion of water structure reported here is also complementary to recent neutron experiments where compression of aqueous solvent structure has been observed at high salt concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

D-amino acid oxidase is the prototype of the FAD-dependent oxidases. It catalyses the oxidation of D-amino acids to the corresponding alpha-ketoacids. The reducing equivalents are transferred to molecular oxygen with production of hydrogen peroxide. We have solved the crystal structure of the complex of D-amino acid oxidase with benzoate, a competitive inhibitor of the substrate, by single isomorphous replacement and eightfold averaging. Each monomer is formed by two domains with an overall topology similar to that of p-hydroxybenzoate hydroxylase. The benzoate molecule lays parallel to the flavin ring and is held in position by a salt bridge with Arg-283. Analysis of the active site shows that no side chains are properly positioned to act as the postulated base required for the catalytic carboanion mechanism. On the contrary, the benzoate binding mode suggests a direct transfer of the substrate alpha-hydrogen to the flavin during the enzyme reductive half-reaction.The active site Of D-amino acid oxidase exhibits a striking similarity with that of flavocytochrome b2, a structurally unrelated FMN-dependent flavoenzyme. The active site groups (if these two enzymes are in fact superimposable once the mirror-image of the flavocytochrome b2 active site is generated with respect to the flavin plane. Therefore, the catalytic sites of D-amino acid oxidase and flavocytochrome b2 appear to have converged to a highly similar but enantiomeric architecture in order to catalvze similar reactions (oxidation of alpha-amino acids or alpha-hydroxy acids), although with opposite stereochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstitutable apoprotein of Crotalus adamanteus L-amino acid oxidase was prepared using hydrophobic interaction chromatography. After reconstitution with flavin adenine dinucleotide, the resulting protein was inactive, with a perturbed conformation of the flavin binding site. Subsequently, a series of cosolvent-dependent compact intermediates was identified. The nearly complete activation of the reconstituted apoprotein and the restoration of its native flavin binding site was achieved in the presence of 50% glycerol. We provide evidence that in addition to a merely stabilizing effect of glycerol on native proteins, glycerol can also have a restorative effect on their compact equilibrium intermediates, and we suggest the hydrophobic effect as a dominating force in this in vitro-assisted restorative process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo all-trans-retinoic acid (ATRA), a differentiation inducer, is capable of causing clinical remission in about 90% of patients with acute promyelocytic leukemia (APL). The molecular basis for the differentiation of APL cells after treatment with ATRA remains obscure and may involve genes other than the known retinoid nuclear transcription factors. We report here the ATRA-induced gene expression in a cell line (NB4) derived from a patient with APL. By differential display-PCR, we isolated and characterized a novel gene (RIG-E) whose expression is up-regulated by ATRA. The gene is 4.0 kb long, consisting of four exons and three introns, and is localized on human chromosome region 8q24. The deduced amino acid sequence predicts a cell surface protein containing 20 amino acids at the N-terminal end corresponding to a signal peptide and an extracellular sequence containing 111 amino acids. The RIG-E coded protein shares some homology with CD59 and with a number of growth factor receptors. It shares high sequence homology with the murine LY-6 multigene family, whose members are small cysteine-rich proteins differentially expressed in several hematopoietic cell lines and appear to function in signal transduction. It seems that so far RIG-E is the closest human homolog of the LY-6 family. Expression of RIG-E is not restricted to myeloid differentiation, because it is also present in thymocytes and in a number of other tissues at different levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD) is a secreted Cu and Zn-containing glycoprotein. While EC-SOD from most mammals is tetrameric and has a high affinity for heparin and heparan sulfate, rat EC-SOD has a low affinity for heparin, does not bind to heparan sulfate in vivo, and is apparently dimeric. To examine the molecular basis of the deviant physical properties of rat EC-SOD, the cDNAs of the rat and mouse EC-SODs were isolated and the deduced amino acid sequences were compared with that of human EC-SOD. Comparison of the sequences offered no obvious explanation of the differences. Analysis of a series of chimeric and point mutated EC-SODs showed that the N-terminal region contributes to the oligomeric state of the EC-SODs, and that a single amino acid, a valine (human amino acid position 24), is essential for the tetramerization. This residue is replaced by an aspartate in the rat. Rat EC-SOD carrying an Asp --> Val mutation is tetrameric and has a high heparin affinity, while mouse EC-SOD with a Val --> Asp mutation is dimeric and has lost its high heparin affinity. Thus, the rat EC-SOD dimer is converted to a tetramer by the exchange of a single amino acid. Furthermore, the cooperative action of four heparin-binding domains is necessary for high heparin affinity. These results also suggest that tetrameric EC-SODs are not symmetrical tetrahedrons, but composed of two interacting dimers, further supporting an evolutionary relationship with the dimeric cytosolic Cu and Zn-containing SODs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between human immunodeficiency virus type I (HIV-1) RNA load changes and the emergence of resistant virus variants was investigated in 24 HIV-1-infected asymptomatic persons during 2 years of treatment with zidovudine by sequentially measuring serum HIV-1 RNA load and the relative amounts of HIV-1 RNA containing mutations at reverse transcriptase (RT) codons 70 (K-->R), 41 (M-->L), and 215 (T-->Y/F). A mean maximum decline in RNA load occurred during the first month, followed by a resurgence between 1 and 3 months, which appeared independent of drug-resistance. Mathematical modeling suggests that this resurgence is caused by host-parasite dynamics, and thus reflects infection of the transiently increased numbers of CD4+ lymphocytes. Between 3 and 6 months of treatment, the RNA load returned to baseline values, which was associated with the emergence of virus containing a single lysine to arginine amino acid change at RT codon 70, only conferring an 8-fold reduction in susceptibility. Despite the relative loss of RNA load suppression, selection toward mutations at RT codons 215 and 41 continued. Identical patterns were observed in the mathematical model. While host-parasite dynamics and outgrowth of low-level resistant virus thus appear responsible for the loss of HIV-1 RNA load suppression, zidovudine continues to select for alternative mutations, conferring increasing levels of resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although trypanosomatids are known to rapidly transaminate exogenous aromatic amino acids in vitro and in vivo, the physiological significance of this reaction is not understood. In postmitochondrial supernatants prepared from Trypanosoma brucei brucei and Crithidia fasciculata, we have found that aromatic amino acids were the preferred amino donors for the transamination of alpha-ketomethiobutyrate to methionine. Intact C. fasciculata grown in the presence of [15N]tyrosine were found to contain detectable [15N]methionine, demonstrating that this reaction occurs in situ in viable cells. This process is the final step in the recycling of methionine from methylthioadenosine, a product of decarboxylated S-adenosylmethionine from the polyamine synthetic pathway. Mammalian liver, in contrast, preferentially used glutamine for this reaction and utilized a narrower range of amino donors than seen with the trypanosomatids. Studies with methylthioadenosine showed that this compound was readily converted to methionine, demonstrating a fully functional methionine-recycling pathway in trypanosomatids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide synthases (NOSs) require tetrahydrobiopterin (BH4) for dimerization and NO production. Mutation analysis of mouse inducible NOS (iNOS; NOS2) identified Gly-450 and Ala-453 as critical for NO production, dimer formation, and BH4 binding. Substitutions at five neighboring positions were tolerated, and normal binding of heme, calmodulin, and NADPH militated against major distortions affecting the NH2-terminal portion, midzone, or COOH terminus of the inactive mutants. Direct involvement of residues 450 and 453 in the binding of BH4 is supported by the striking homology of residues 448-480 to a region extensively shared by the three BH4-utilizing aromatic amino acid hydroxylases and is consistent with the conservation of these residues among all 10 reported NOS sequences, including mammalian NOSs 1, 2, and 3, as well as avian and insect NOSs. Altered binding of BH4 and/or L-arginine may explain how the addition of a single methyl group to the side chain of residue 450 or the addition of three methylenes to residue 453 can each abolish an enzymatic activity that reflects the concerted function of 1143 other residues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of bicuculline-insensitive gamma-aminobutyric acid (GABA) receptors, GABAC, has been identified in retina. Several lines of evidence indicate that GABAC receptors are formed partially or wholly of GABA rho subunits. These receptors generate a Cl- current in response to GABA but differ from GABAA receptors in a number of ways. Picrotoxin, widely accepted as a noncompetitive antagonist of GABAA receptors, displays competitive and noncompetitive antagonism of GABAC receptors in perch and bovine retina and GABA rho 1 receptors expressed in Xenopus oocytes. The aim of this study was to identify the molecular basis of the two components of picrotoxin inhibition of GABA rho 1 receptors. By using a domain-swapping and mutagenesis strategy, a difference in picrotoxin sensitivity between rho 1 and rho 2 receptors was localized to a single amino acid in the putative second transmembrane domain. Substitution of this amino acid with residues found in the analogous position in highly picrotoxin-sensitive glycine alpha and GABAA subunits increased the sensitivity of rho 1 mutants 10- to 500-fold. Importantly, the competitive component of picrotoxin inhibition of the rho 1 mutant receptors was almost eliminated. These findings demonstrate that an amino acid in the putative channel domain of GABA rho 1 receptors influences picrotoxin sensitivity and mediates agonist binding by an allosteric mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro genetic system was developed as a rapid means for studying the specificity determinants of RNA-binding proteins. This system was used to investigate the origin of the RNA-binding specificity of the mammalian spliceosomal protein U1A. The U1A domain responsible for binding to U1 small nuclear RNA was locally mutagenized and displayed as a combinatorial library on filamentous bacteriophage. Affinity selection identified four U1A residues in the mutagenized region that are important for specific binding to U1 hairpin II. One of these residues (Leu-49) disproportionately affects the rates of binding and release and appears to play a critical role in locking the protein onto the RNA. Interestingly, a protein variant that binds more tightly than U1A emerged during the selection, showing that the affinity of U1A for U1 RNA has not been optimized during evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expansins are unusual proteins discovered by virtue of their ability to mediate cell wall extension in plants. We identified cDNA clones for two cucumber expansins on the basis of peptide sequences of proteins purified from cucumber hypocotyls. The expansin cDNAs encode related proteins with signal peptides predicted to direct protein secretion to the cell wall. Northern blot analysis showed moderate transcript abundance in the growing region of the hypocotyl and no detectable transcripts in the nongrowing region. Rice and Arabidopsis expansin cDNAs were identified from collections of anonymous cDNAs (expressed sequence tags). Sequence comparisons indicate at least four distinct expansin cDNAs in rice and at least six in Arabidopsis. Expansins are highly conserved in size and sequence (60-87% amino acid sequence identity and 75-95% similarity between any pairwise comparison), and phylogenetic trees indicate that this multigene family formed before the evolutionary divergence of monocotyledons and dicotyledons. Sequence and motif analyses show no similarities to known functional domains that might account for expansin action on wall extension. A series of highly conserved tryptophans may function in expansin binding to cellulose or other glycans. The high conservation of this multigene family indicates that the mechanism by which expansins promote wall extensin tolerates little variation in protein structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.