945 resultados para ALL-CAUSE
Resumo:
Glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored, membrane-bound heparan sulfate (HS) proteoglycans. Their biological roles are only partly understood, although it is assumed that they modulate the activity of HS-binding growth factors. The involvement of glypicans in developmental morphogenesis and growth regulation has been highlighted by Drosophila mutants and by a human overgrowth syndrome with multiple malformations caused by glypican 3 mutations (Simpson-Golabi-Behmel syndrome). We now report that autosomal-recessive omodysplasia, a genetic condition characterized by short-limbed short stature, craniofacial dysmorphism, and variable developmental delay, maps to chromosome 13 (13q31.1-q32.2) and is caused by point mutations or by larger genomic rearrangements in glypican 6 (GPC6). All mutations cause truncation of the GPC6 protein and abolish both the HS-binding site and the GPI-bearing membrane-associated domain, and thus loss of function is predicted. Expression studies in microdissected mouse growth plate revealed expression of Gpc6 in proliferative chondrocytes. Thus, GPC6 seems to have a previously unsuspected role in endochondral ossification and skeletal growth, and its functional abrogation results in a short-limb phenotype.
Resumo:
A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.
Resumo:
PURPOSE: To report a large deletion that encompasses more than 90% of PRPF31 gene and two other neighboring genes in their entirety in an adRP pedigree that appears to show only the typical clinical features of retinitis pigmentosa. METHODS: To identify PRPF31 mutation in a dominant RP family (ADRP2) previously linked to the RP11 locus, the 14 exons of PRPF31 were screened for mutations by direct sequencing. To investigate the possibility of a large deletion, microsatellite markers near PRPF31 gene were analyzed by non-denaturing PAGE. RESULTS: Initial screening of PRPF31 gene in the ADRP2 family did not reveal an obvious mutation. A large deletion was however suspected due to lack of heterozygosity for nearly all PRPF31 intragenic single nucleotide polymorphysm (SNPs). In order to estimate the size of the deletion, SNPs and microsatellite markers spanning and flanking PRPF31 were analyzed in the entire ADRP2 family. Haplotype analysis with the above markers suggested a deletion of approximately 30 kb that included the putative promoter region of a novel gene OSCAR, the entire genomic content of genes NDUFA3, TFPT and more than 90% of PRPF31 gene. Sequence analysis of the region flanking the potential deletion showed a high presence of Alu elements implicating Alu mediated recombination as the mechanism responsible for this event. CONCLUSIONS: This mutation provides evidence that haploinsufficiency rather than aberrant function of mutated proteins is the cause of disease in these adRP patients with mutations in PRPF31 gene.
Resumo:
Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.
Resumo:
Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score ¼ 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. [corrected].
Resumo:
Invasive fungal infections are an increasingly frequent etiology of sepsis in critically ill patients causing substantial morbidity and mortality. Candida species are by far the predominant agent of fungal sepsis accounting for 10% to 15% of health-care associated infections, about 5% of all cases of severe sepsis and septic shock and are the fourth most common bloodstream isolates in the United States. One-third of all episodes of candidemia occur in the intensive care setting. Early diagnosis of invasive candidiasis is critical in order to initiate antifungal agents promptly. Delay in the administration of appropriate therapy increases mortality. Unfortunately, risk factors, clinical and radiological manifestations are quite unspecific and conventional culture methods are suboptimal. Non-culture based methods (such as mannan, anti-mannan, β-d-glucan, and polymerase chain reaction) have emerged but remain investigational or require additional testing in the ICU setting. Few prophylactic or pre-emptive studies have been performed in critically ill patients. They tended to be underpowered and their clinical usefulness remains to be established under most circumstances. The antifungal armamentarium has expanded considerably with the advent of lipid formulations of amphotericin B, the newest triazoles and the echinocandins. Clinical trials have shown that the triazoles and echinocandins are efficacious and well tolerated antifungal therapies. Clinical practice guidelines for the management of invasive candidiasis have been published by the European Society for Clinical Microbiology and Infectious Diseases and the Infectious Diseases Society of North America.
Resumo:
The clinical and radiological data of 52 patients with subarachnoid haemorrhage (SAH) and a negative panangiography were analysed with an average follow-up period of 3.8 years. Of these 52 patients, only one (1.9%) was subsequently found to have an aneurysm. Second angiography proved to be inconclusive in all 24 cases where it was performed. Of the 51 'true' non-aneurysmal SAH, 80% were in a good clinical grade on admission and 12% developed cerebral ischaemia. The mortality rate following SAH was 4%. There was one rebleeding. At follow-up examination, 87% of the patients had made a good recovery and 6% were left disabled due to SAH. Four patients with an aneurysmal pattern of SAH required a permanent shunt. All of the 22 patients with a perimesencephalic SAH were in a good neurological condition upon admission; one of them developed an angiography-induced transient cerebral ischaemia and another one suffered from a fatal rebleeding. None of the 21 survivors was disabled at follow-up examination. The clinical course of patients with SAH of unknown cause, especially those with a perimesencephalic pattern of haemorrhage, is good. Repeated angiography in this latter group is not useful. In the aneurysmal pattern SAH group, repeat angiography is advised only if there is strong computed tomographic (CT) scan suspicion of an aneurysm.
Resumo:
The aim of the present study was to explore the prevalence of acute cerebrovascular symptoms temporally related to carotid Doppler examination (DEx), in order to increase the awareness and recording of such events and to discuss possible mechanisms. All adult patients who complained of acute onset neurologic symptoms during or shortly after a carotid DEx, between 01/2003 and 12/2011 in the University Hospital of Lausanne were prospectively collected. We identified four consecutive patients with acute onset neurologic symptoms during or shortly after a carotid DEx among approximately 13,500 patients who underwent carotid DEx in our facility during the nine-year period (0.015% of all examined carotids). Clinical data, imaging reports and CTA (CT angiography) or/and ultrasound images are presented for each patient. Ischemic cerebrovascular events during or immediately after cervical Doppler could be due to chance or to several physical factors. They should be promptly recognized by Doppler personnel and properly treated, but do not put into question the overwhelming benefits of Doppler in cerebrovascular patients.
Resumo:
Marie Unna hereditary hypotrichosis (MUHH) is an autosomal dominant form of genetic hair loss. In a large Chinese family carrying MUHH, we identified a pathogenic initiation codon mutation in U2HR, an inhibitory upstream ORF in the 5' UTR of the gene encoding the human hairless homolog (HR). U2HR is predicted to encode a 34-amino acid peptide that is highly conserved among mammals. In 18 more families from different ancestral groups, we identified a range of defects in U2HR, including loss of initiation, delayed termination codon and nonsense and missense mutations. Functional analysis showed that these classes of mutations all resulted in increased translation of the main HR physiological ORF. Our results establish the link between MUHH and U2HR, show that fine-tuning of HR protein levels is important in control of hair growth, and identify a potential mechanism for preventing hair loss or promoting hair removal.
Resumo:
Opsismodysplasia (OPS) is a severe autosomal-recessive chondrodysplasia characterized by pre- and postnatal micromelia with extremely short hands and feet. The main radiological features are severe platyspondyly, squared metacarpals, delayed skeletal ossification, and metaphyseal cupping. In order to identify mutations causing OPS, a total of 16 cases (7 terminated pregnancies and 9 postnatal cases) from 10 unrelated families were included in this study. We performed exome sequencing in three cases from three unrelated families and only one gene was found to harbor mutations in all three cases: inositol polyphosphate phosphatase-like 1 (INPPL1). Screening INPPL1 in the remaining cases identified a total of 12 distinct INPPL1 mutations in the 10 families, present at the homozygote state in 7 consanguinous families and at the compound heterozygote state in the 3 remaining families. Most mutations (6/12) resulted in premature stop codons, 2/12 were splice site, and 4/12 were missense mutations located in the catalytic domain, 5-phosphatase. INPPL1 belongs to the inositol-1,4,5-trisphosphate 5-phosphatase family, a family of signal-modulating enzymes that govern a plethora of cellular functions by regulating the levels of specific phosphoinositides. Our finding of INPPL1 mutations in OPS, a severe spondylodysplastic dysplasia with major growth plate disorganization, supports a key and specific role of this enzyme in endochondral ossification.
Resumo:
OBJECTIVE: To describe a new entity of congenital muscular dystrophies caused by de novo LMNA mutations. METHODS: Fifteen patients presenting with a myopathy of onset in the first year of life were subjected to neurological and genetic evaluation. Histopathological and immunohistochemical analyses were performed for all patients. RESULTS: The 15 patients presented with muscle weakness in the first year of life, and all had de novo heterozygous LMNA mutations. Three of them had severe early-onset disease, no motor development, and the rest experienced development of a "dropped head" syndrome phenotype. Despite variable severity, there was a consistent clinical pattern. Patients typically presented with selective axial weakness and wasting of the cervicoaxial muscles. Limb involvement was predominantly proximal in upper extremities and distal in lower extremities. Talipes feet and a rigid spine with thoracic lordosis developed early. Proximal contractures appeared later, most often in lower limbs, sparing the elbows. Ten children required ventilatory support, three continuously through tracheotomy. Cardiac arrhythmias were observed in four of the oldest patients but were symptomatic only in one. Creatine kinase levels were mild to moderately increased. Muscle biopsies showed dystrophic changes in nine children and nonspecific myopathic changes in the remaining. Markedly atrophic fibers were common, most often type 1, and a few patients showed positive inflammatory markers. INTERPRETATION: The LMNA mutations identified appear to correlate with a relatively severe phenotype. Our results further broaden the spectrum of laminopathies and define a new disease entity that we suggest is best classified as a congenital muscular dystrophy (LMNA-related congenital muscular dystrophy, or L-CMD).
Resumo:
Metaphyseal chondromatosis with hydroxyglutaric aciduria (MC-HGA) is a generalized skeletal dysplasia, accompanied by urinary excretion of D-2- hydroxyglutarate (HGA), and variable cerebral involvement. By wholeexome sequencing 2 unrelated patients with MC-HGA, we have found mutations in isocitrate dehydrogenase 1 (IDH1) at codon 132, as apparent somatic mosaicism. IDH1 is a key enzyme of the Krebs cycle, which converts isocitrate into alpha-ketoglutarate (a-KG). Mutations at IDH1 Arg132 residue have originally been identified in different tumour types (isolated gliomas, leukemias, and chondrosarcomas). These mutations trans-specify the enzyme activity resulting in HGA accumulation and a-KG depletion. This induces activation of hypoxia-inducible factor 1-alpha (HIF-1a), an important regulator of chondrocyte proliferation at the growth plate. Differently from Arg132 somatic mutations found in isolated tumours, themutation in our patientsmust have occurred very early in embryogenesis to cause a generalized dysplasia with involvement of all long bones metaphyses and mutation detectability in blood. Identical mutations have subsequently been identified in chondromas excised from patients with multiple chondromatosis (Ollier disease). Tissue distribution of themutationmay explain variable cerebral involvement and the susceptibility to develop tumours in other organs. The postulated pathophysiology ofMC-HGA points out the link between Krebs cycle, hypoxia sensing and bone growth.
Resumo:
RNA polymerase III (Pol III) synthesizes tRNAs and other small noncoding RNAs to regulate protein synthesis. Dysregulation of Pol III transcription has been linked to cancer, and germline mutations in genes encoding Pol III subunits or tRNA processing factors cause neurogenetic disorders in humans, such as hypomyelinating leukodystrophies and pontocerebellar hypoplasia. Here we describe an autosomal recessive disorder characterized by cerebellar hypoplasia and intellectual disability, as well as facial dysmorphic features, short stature, microcephaly, and dental anomalies. Whole-exome sequencing revealed biallelic missense alterations of BRF1 in three families. In support of the pathogenic potential of the discovered alleles, suppression or CRISPR-mediated deletion of brf1 in zebrafish embryos recapitulated key neurodevelopmental phenotypes; in vivo complementation showed all four candidate mutations to be pathogenic in an apparent isoform-specific context. BRF1 associates with BDP1 and TBP to form the transcription factor IIIB (TFIIIB), which recruits Pol III to target genes. We show that disease-causing mutations reduce Brf1 occupancy at tRNA target genes in Saccharomyces cerevisiae and impair cell growth. Moreover, BRF1 mutations reduce Pol III-related transcription activity in vitro. Taken together, our data show that BRF1 mutations that reduce protein activity cause neurodevelopmental anomalies, suggesting that BRF1-mediated Pol III transcription is required for normal cerebellar and cognitive development.
Resumo:
PURPOSE: To report three cases of posterior vasculitis associated with subacute giant cell arteritis (GCA). METHODS: Three patients with decreased vision underwent complete ophthalmologic examination and fluorescein angiography. RESULTS: All patients presented posterior vasculitis. Patient 1 had an erythrocyte sedimentation rate (ESR) of 38 mm/hr and a C-reactive protein (CRP) of 28mg/L. Patient 2 and 3 had an ESR of 104 and 95 mm/hr and a CRP of 42 and 195 mg/L accordingly. Diagnosis was established by temporal artery biopsy. Resolution was observed after systemic prednisolone therapy. CONCLUSION: GCA should be suspected when posterior vasculitis and relatively high ESR and CRP are present.
Resumo:
AIM: The aim of this case report was to show the importance to research metabolic etiology, especially a carnitine deficiency in dilated cardiomyopathy of children. CASE REPORT: A three years old Togolese child presented muscular hypotonia, dyspnea. Examination showed left galop murmur and systolic murmur 2/6. Chest X-ray showed cardiomegaly (CTI: 0.66), electrocardiogram, a sinusal rythm, left ventricle hypertrophy and T wave abnormalities. Echocardiogram showed a markedly dilated left ventricle with reduced systolic function (EF: 0.43; reference range 0.55-0.80) and moderate mitral regurgitation. The inflammatory signs where negatives. Magnetic resonance imaging don't show signs of ischemic or myocarditis. The levels of free and total plasmatic carnitine decreased: 3μmol/L (N: 18-48μmol/L) and 5μmol/l (N: 29-70μmol/L) respectively. Mutation analysis of the gene SLC22A5 confirms the diagnosis of primary systemic carnitine deficiency. Treatment with oral carnitine was started at 200mg/kg per day. Within three weeks of treatment, we observed the decrease of all symptoms and the left ventricular size and function normalized (EF: 0.62). He has now been on oral carnitine for live. CONCLUSION: Primary carnitine deficiency is a cause of dilated cardiomyopathy in child. It must systematically be suspected when a child presents a primitive cardiomyopathy. The treatment with oral carnitine for live is simple, with excellent prognosis.