939 resultados para ALKALI-HALIDE CRYSTALS
Resumo:
1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current
Resumo:
Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.
Resumo:
A suite of conjugate pore fluid and sediment samples were collected during Leg 169 of the ODP from within the clastic sedimentary sequences which host massive sulphides at Central Hill, Escanaba Trough (ODP Site 1038). We report the alkali element and boron, and Li and B isotope data for these samples. Relative to a reference site (Site 1037) located outside the zone of high heat flow, pore fluids from Site 1038 show a wide variation in Cl (300-800 mM), and have far higher concentrations of Li (up to 6.2 mM), B (up to 9.7 mM), Cs (up to 5.0 mM), and Rb (up to 97 mM). We show that the pore fluids are derived from hydrothermal circulation that has extended into the basement oceanic crust, with input of the alkali elements and B as the rising hydrothermal fluids interact geochemically with the overlying clastic sediments. There is, however, no marked depletion of these elements in the conjugate sediments, suggesting that there has been advective transport of fluids away from the primary hydrothermal reaction site. This is supported by modelling of the Li and B isotope systematics of the pore fluids, which shows that they record extensive formation of secondary minerals during cooling of the fluids from ~350 to ~20ºC. Precipitation of metal-rich sulphides would have occurred prior to the formation of these minerals, thus, the pore fluid Li and B isotope data can place important constraints on the locus of sulphide deposition beneath the seafloor at Escanaba.
Resumo:
Electron microprobe data are presented for clinopyroxenes, plagioclases, palagonites, smectites, celadonites, and zeolites in Hole 462A sheet-flow basalts and Site 585 volcaniclastic sediments. Glomerocrystic clinopyroxenes in Hole 462A are predominantly Ti-poor augites with minor fractionation to ferroaugites in rim portions. Quenched plumose clinopyroxenes show considerable variation from Ca-rich to Ca-poor augites, although all are characterized by being Tirich and Cr-poor relative to the glomerocrysts. Two differentiated series of Site 585 pyroxene compositions, calcic augite and diopside-salite, demonstrate the coexistence, in the vitric and lithic clasts, of tholeiitic and alkali basalt types, respectively. Plagioclase compositions in all samples are mainly labradorites, although some zoned Hole 462A glomerocrysts range from An73 to An20 and are characterized by high Mg and Fe contents in the more calcic varieties. The K content of the plagioclases is highest in the more sodic crystals, although the overall higher orthoclase component of Site 585 plagioclases reflects the generally higher bulk-rock K content. The compositions of both secondary smectites and celadonites are similar irrespective of the alteration location (glass, matrix, vesicles, etc.), although brown smectites replacing interstitial glass have marginally higher total Fe contents than pale green and yellow smectites. Analyzed zeolites are mainly phillipsites with variable alkali content, and, together with associated celadonite, represent late-stage alteration repositories for K under mildly oxidizing conditions. The compositions of both early and late secondary minerals are typical of those formed by the submarine alteration of basaltic rocks at low temperatures.
Resumo:
The Labrador Sea is a basin with oceanic crust in its deep part. Bottom morphology of the Labrador Sea is rather complicated. Data of seismic profiling in this region indicate presence of numerous submarine mountains and hills, which are dominated by volcanic rocks. Some chemical and mineral characteristics of the rocks, in particular, high concentrations of alkalis and phosphorus, and presence of high-titanium augite, ilmenite, and devitrified glass enriched in K and Na, allow us to attribute them to K-Na subalkaline picrites typical for ocean islands, seamounts, and oceanic plateaus. Rocks of the K-Na subalkaline series usually form submarine basements and subaerial volcanoes of ocean islands, seamounts, and oceanic plateaus. Thus, the suggestion on formation of the highs on the continental crust is not confirmed by petrographic data, which require a refinement of the tectonic model of the northern part of the Labrador Sea.