972 resultados para AG NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8 +/- 0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, Pd(SC12H25)(2)](6) but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd@PdO core-shell nanoparticles thus demonstrating its versatility. These I'd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pb0.76Ca0.24TiO3 (PCT24) nanoparticles were synthesized by modified sal gel method and characterized by a number of experimental techniques such as X-ray diffraction, TGA-DTA, FTIR and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 degrees C for 1 h) PCT24 nanoparticles have tetragonal perovskite crystal structure. TEM have been employed to characterize the morphology, structure and composition of the as prepared nanoparticles. Dielectric results indicates the evidence for relaxor type behavior while observed leaky ferroelectric loops may be because of the defects such as grain boundaries and the pores in the sample as the sample was not heated at higher temperature, to retain the nanosize dimension of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various cathode materials studied for Li-ion batteries over the past many years, spinet LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g(-1) at current density of 21 mA g(-1). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixteen million nucleotide sequence of genome of various organisms have been analysed to detect and study the extent of occurrence of simple repetitive sequences. Two sequence motifs (TG/CA)n and (CT/AG)n capable of adopting unusual DNA structures, left handed Z-conformation and triple-helical conformation respectively, are found to be abundant in rodent and human genomes, but almost completely absent in bacterial genome. (TG/CA)n and (CT/AG)n sequences are present mostly in the intron or 5'/3' flanking regions of the genes. The presence of such repeat motifs in genomic sequence of higher eukaryotes has been correlated with their possible functional significance in nucleosome organization, recombination and gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature sensing characteristics for H-2, ethanol, NH3, H2S and water have been investigated with thick-film sensors based on GaN nanoparticles, prepared by a simple chemical route. In general, GaN nanoparticles exhibit satisfactory sensor properties for these gases and vapors even at room temperature. The sensitivity for ethanol is found to be highest, the sensitivity and recovery times being smallest. Gas sensor properties of GaN seem to be related to intrinsic defects, which act as sorption sites for the gas molecules. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study silver nanoparticles were rapidly synthesized at room temperature by treating silver ions with the Citrus limon (lemon) extract The effect of various process parameters like the reductant con centration mixing ratio of the reactants and the concentration of silver nitrate were studied in detail In the standardized process 10(-2) M silver nitrate solution was interacted for 411 with lemon Juice (2% citric acid concentration and 0 5% ascorbic acid concentration) in the ratio of 1 4(vol vol) The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance as determined by UV-Visible spectra in the range of 400-500 nm X ray diffraction analysis revealed the distinctive facets (1 1 1 200 220 2 2 2 and 3 1 1 planes) of silver nanoparticles We found that citric acid was the principal reducing agent for the nanosynthesis process FT IR spectral studies demonstrated citric acid as the probable stabilizing agent Silver nanoparticles below 50 nm with spherical and spheroidal shape were observed from transmission electron microscopy The correlation between absorption maxima and particle sizes were derived for different UV-Visible absorption maxima (corresponding to different citric acid concentrations) employing MiePlot v 3 4 The theoretical particle size corresponding to 2% citric acid concentration was corn pared to those obtained by various experimental techniques like X ray diffraction analysis atomic force microscopy and transmission electron microscopy (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of gold (similar to 35 nm diameter) as well as ReO3 (similar to 17 nm diameter) nanoparticles placed atop silicon photovoltaic devices on absorption and photocurrent generation has been investigated. The nanoparticles improve the power transmission into the semiconductor and consequently, the photocurrent response at wavelengths corresponding to plasmon absorption. An increase in short circuit current up to 4.5% under simulated solar irradiation was observed with the ReO3 nanoparticles, while the gold nanoparticles showed enhancements up to 6.5%. The increase in photocurrent is observed at wavelengths corresponding to the maxima in the surface plasmon resonance absorption spectra. (C) 2010 The Japan Society of Applied Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.