982 resultados para AFFERENT LIMB


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Inflatable Rescue Boat (IRB) is arguably the most effective rescue tool used by the Australian surf lifesavers. The exceptional features of high mobility and rapid response have enabled it to become an icon on Australia's popular beaches. However, the IRB's extensive use within an environment that is as rugged as it is spectacular, has led it to become a danger to those who risk their lives to save others. Epidemiological research revealed lower limb injuries to be predominant, particularly the right leg. The common types of injuries were fractures and dislocations, as well as muscle or ligament strains and tears. The concern expressed by Surf Life Saving Queensland (SLSQ) and Surf Life Saving Australia (SLSA) led to a biomechanical investigation into this unique and relatively unresearched field. The aim of the research was to identify the causes of injury and propose processes that may reduce the instances and severity of injury to surf lifesavers during IRB operation. Following a review of related research, a design analysis of the craft was undertaken as an introduction to the craft, its design and uses. The mechanical characteristics of the vessel were then evaluated and the accelerations applied to the crew in the IRB were established through field tests. The data were then combined and modelled in the 3-D mathematical modelling and simulation package, MADYMO. A tool was created to compare various scenarios of boat design and methods of operation to determine possible mechanisms to reduce injuries. The results of this study showed that under simulated wave loading the boats flex around a pivot point determined by the position of the hinge in the floorboard. It was also found that the accelerations experienced by the crew exhibited similar characteristics to road vehicle accidents. Staged simulations indicated the attributes of an optimum foam in terms of thickness and density. Likewise, modelling of the boat and crew produced simulations that predicted realistic crew response to tested variables. Unfortunately, the observed lack of adherence to the SLSA footstrap Standard has impeded successful epidemiological and modelling outcomes. If uniformity of boat setup can be assured then epidemiological studies will be able to highlight the influence of implementing changes to the boat design. In conclusion, the research provided a tool to successfully link the epidemiology and injury diagnosis to the mechanical engineering design through the use of biomechanics. This was a novel application of the mathematical modelling software MADYMO. Other craft can also be investigated in this manner to provide solutions to the problem identified and therefore reduce risk of injury for the operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetic peripheral neuropathy (DPN) is one of the most debilitating complications of diabetes. DPN is a major cause of foot ulceration and lower limb amputation. Early diagnosis and management is a key factor in reducing morbidity and mortality. Current techniques for clinical assessment of DPN are relatively insensitive for detecting early disease or involve invasive procedures such as skin biopsies. There is a need for less painful, non-invasive and safe evaluation methods. Eye care professionals already play an important role in the management of diabetic retinopathy; however recent studies have indicated that the eye may also be an important site for the diagnosis and monitoring of neuropathy. Corneal nerve morphology has been shown to be a promising marker of diabetic neuropathy occurring elsewhere in the body, and emerging evidence tentatively suggests that retinal anatomical markers and a range of functional visual indicators could similarly provide useful information regarding neural damage in diabetes – although this line of research is, as yet, less well established. This review outlines the growing body of evidence supporting a potential diagnostic role for retinal structure and visual functional markers in the diagnosis and monitoring of peripheral neuropathy in diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design: Case Study Series.---------- Introduction: Restriction of forearm rotation may be required for effective management and rehabilitation of the upper limb after trauma.---------- Purpose of the Study: To compare the effectiveness of four splints in restricting forearm rotation.---------- Methods: Muenster, Sugartong, antipronation distal radioulnar joint (DRUJ), and standard wrist splints were fabricated for five healthy participants. Active range of motion (AROM) in forearm pronation and supination was measured with a goniometer for each splint, at the initial point of sensory feedback and during exertion of maximal force.---------- Results: Repeated-measures analysis of variance indicated significant differences between splints for all four AROM measures. Post hoc paired t-tests showed that the Sugartong splint was significantly more restrictive in pronation than the Muenster splint. The antipronation DRUJ splint provided significantly greater restriction in pronation than the standard wrist splint. No splints immobilized the forearm completely.---------- Conclusions: The Sugartong splint is recommended for maximal restriction in pronation, but individual patient characteristics require consideration in splint choice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main causes of above knee or transfemoral amputation (TFA) in the developed world is trauma to the limb. The number of people undergoing TFA due to limb trauma, particularly due to war injuries, has been increasing. Typically the trauma amputee population, including war-related amputees, are otherwise healthy, active and desire to return to employment and their usual lifestyle. Consequently there is a growing need to restore long-term mobility and limb function to this population. Traditionally transfemoral amputees are provided with an artificial or prosthetic leg that consists of a fabricated socket, knee joint mechanism and a prosthetic foot. Amputees have reported several problems related to the socket of their prosthetic limb. These include pain in the residual limb, poor socket fit, discomfort and poor mobility. Removing the socket from the prosthetic limb could eliminate or reduce these problems. A solution to this is the direct attachment of the prosthesis to the residual bone (femur) inside the residual limb. This technique has been used on a small population of transfemoral amputees since 1990. A threaded titanium implant is screwed in to the shaft of the femur and a second component connects between the implant and the prosthesis. A period of time is required to allow the implant to become fully attached to the bone, called osseointegration (OI), and be able to withstand applied load; then the prosthesis can be attached. The advantages of transfemoral osseointegration (TFOI) over conventional prosthetic sockets include better hip mobility, sitting comfort and prosthetic retention and fewer skin problems on the residual limb. However, due to the length of time required for OI to progress and to complete the rehabilitation exercises, it can take up to twelve months after implant insertion for an amputee to be able to load bear and to walk unaided. The long rehabilitation time is a significant disadvantage of TFOI and may be impeding the wider adoption of the technique. There is a need for a non-invasive method of assessing the degree of osseointegration between the bone and the implant. If such a method was capable of determining the progression of TFOI and assessing when the implant was able to withstand physiological load it could reduce the overall rehabilitation time. Vibration analysis has been suggested as a potential technique: it is a non destructive method of assessing the dynamic properties of a structure. Changes in the physical properties of a structure can be identified from changes in its dynamic properties. Consequently vibration analysis, both experimental and computational, has been used to assess bone fracture healing, prosthetic hip loosening and dental implant OI with varying degrees of success. More recently experimental vibration analysis has been used in TFOI. However further work is needed to assess the potential of the technique and fully characterise the femur-implant system. The overall aim of this study was to develop physical and computational models of the TFOI femur-implant system and use these models to investigate the feasibility of vibration analysis to detect the process of OI. Femur-implant physical models were developed and manufactured using synthetic materials to represent four key stages of OI development (identified from a physiological model), simulated using different interface conditions between the implant and femur. Experimental vibration analysis (modal analysis) was then conducted using the physical models. The femur-implant models, representing stage one to stage four of OI development, were excited and the modal parameters obtained over the range 0-5kHz. The results indicated the technique had limited capability in distinguishing between different interface conditions. The fundamental bending mode did not alter with interfacial changes. However higher modes were able to track chronological changes in interface condition by the change in natural frequency, although no one modal parameter could uniquely distinguish between each interface condition. The importance of the model boundary condition (how the model is constrained) was the key finding; variations in the boundary condition altered the modal parameters obtained. Therefore the boundary conditions need to be held constant between tests in order for the detected modal parameter changes to be attributed to interface condition changes. A three dimensional Finite Element (FE) model of the femur-implant model was then developed and used to explore the sensitivity of the modal parameters to more subtle interfacial and boundary condition changes. The FE model was created using the synthetic femur geometry and an approximation of the implant geometry. The natural frequencies of the FE model were found to match the experimental frequencies within 20% and the FE and experimental mode shapes were similar. Therefore the FE model was shown to successfully capture the dynamic response of the physical system. As was found with the experimental modal analysis, the fundamental bending mode of the FE model did not alter due to changes in interface elastic modulus. Axial and torsional modes were identified by the FE model that were not detected experimentally; the torsional mode exhibited the largest frequency change due to interfacial changes (103% between the lower and upper limits of the interface modulus range). Therefore the FE model provided additional information on the dynamic response of the system and was complementary to the experimental model. The small changes in natural frequency over a large range of interface region elastic moduli indicated the method may only be able to distinguish between early and late OI progression. The boundary conditions applied to the FE model influenced the modal parameters to a far greater extent than the interface condition variations. Therefore the FE model, as well as the experimental modal analysis, indicated that the boundary conditions need to be held constant between tests in order for the detected changes in modal parameters to be attributed to interface condition changes alone. The results of this study suggest that in a clinical setting it is unlikely that the in vivo boundary conditions of the amputated femur could be adequately controlled or replicated over time and consequently it is unlikely that any longitudinal change in frequency detected by the modal analysis technique could be attributed exclusively to changes at the femur-implant interface. Therefore further development of the modal analysis technique would require significant consideration of the clinical boundary conditions and investigation of modes other than the bending modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This study investigated the effects of simulated visual impairment on nighttime driving performance and pedestrian recognition under real-road conditions. METHODS: Closed road nighttime driving performance was measured for 20 young visually normal participants (M = 27.5 +/- 6.1 years) under three visual conditions: normal vision, simulated cataracts, and refractive blur that were incorporated in modified goggles. The visual acuity levels for the cataract and blur conditions were matched for each participant. Driving measures included sign recognition, avoidance of low contrast road hazards, time to complete the course, and lane keeping. Pedestrian recognition was measured for pedestrians wearing either black clothing or black clothing with retroreflective markings on the moveable joints to create the perception of biological motion ("biomotion"). RESULTS: Simulated visual impairment significantly reduced participants' ability to recognize road signs, avoid road hazards, and increased the time taken to complete the driving course (p < 0.05); the effect was greatest for the cataract condition, even though the cataract and blur conditions were matched for visual acuity. Although visual impairment also significantly reduced the ability to recognize the pedestrian wearing black clothing, the pedestrian wearing "biomotion" was seen 80% of the time. CONCLUSIONS: Driving performance under nighttime conditions was significantly degraded by modest visual impairment; these effects were greatest for the cataract condition. Pedestrian recognition was greatly enhanced by marking limb joints in the pattern of "biomotion," which was relatively robust to the effects of visual impairment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seated shot-putters rely on a customized assistive device called a throwing frame. Currently, the construction of each individual throwing frame is mainly driven by an empirical approach. One way to refine the conception is to improve the basic understanding of performance of seated shot-putters. The relationship between performance and throwing technique has been well described. Remarkably, the relationship between performance and throwing frame characteristics has received limited attention. The primary objective of this study was to present a cataloguing of characteristics of throwing frames used by seated shot-putters. This cataloguing consisted of defining and grouping 26 characteristics into three main categories (i.e., whole body, foot and upper limb specific characteristics) and seven sub-categories. The secondary objective of this study was to provide raw characterisations of the throwing frames for a group of athletes who participated in a world-class event. The characterisation consisted of describing the characteristics of each throwing frame. Potential relationships between characteristics, performance and classification were also identified. The cataloguing was achieved using a 6-step heuristic approach, involving expert opinions and the analysis of 215 attempts produced by 55 male athletes during the 2006 IPC Athletics World Championships. The distribution of samples across characteristics suggested a relevant level of comprehensiveness for the proposed cataloguing. The raw data, the profile of best athletes and the frequency of characteristics provided key benchmark information for construction of a throwing frame as well as coaching, classification and officiating. Analysis of data sets relating to characteristics, performance and classification were inconclusive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The enthesis of the plantar fascia is thought to play an important role in stress dissipation. However, the potential link between entheseal thickening characteristic of enthesopathy and the stress-dissipating properties of the intervening plantar fat pad have not been investigated. Purpose: This study was conducted to identify whether plantar fat pad mechanics explain variance in the thickness of the fascial enthesis in individuals with and without plantar enthesopathy. Study Design: Case-control study; Level of evidence, 3. Methods: The study population consisted of 9 patients with unilateral plantar enthesopathy and 9 asymptomatic, individually matched controls. The thickness of the enthesis of the symptomatic, asymptomatic, and a matched control limb was acquired using high-resolution ultrasound. The compressive strain of the plantar fat pad during walking was estimated from dynamic lateral radiographs acquired with a multifunction fluoroscopy unit. Peak compressive stress was simultaneously acquired via a pressure platform. Principal viscoelastic parameters were estimated from subsequent stress-strain curves. Results: The symptomatic fascial enthesis (6.7 ± 2.0 mm) was significantly thicker than the asymptomatic enthesis (4.2 ± 0.4 mm), which in turn was thicker than the enthesis (3.3 ± 0.4 mm) of control limbs (P < .05). There was no significant difference in the mean thickness, peak stress, peak strain, or secant modulus of the plantar fat pad between limbs. However, the energy dissipated by the fat pad during loading and unloading was significantly lower in the symptomatic limb (0.55 ± 0.17) when compared with asymptomatic (0.69 ± 0.13) and control (0.70 ± 0.09) limbs (P < .05). The sonographic thickness of the enthesis was correlated with the energy dissipation ratio of the plantar fat pad (r = .72, P < .05), but only in the symptomatic limb. Conclusion: The energy-dissipating properties of the plantar fat pad are associated with the sonograpic appearance of the enthesis in symptomatic limbs, providing a previously unidentified link between the mechanical behavior of the plantar fat pad and enthesopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been no direct attempt to evaluate whether gait performed overground and on a treadmill is the same for lower limb amputees. A multiple case study approach was adopted to explore the degenerate movement behavior displayed by three male amputees. Participants walked overground at a self-selected preferred pace and when this speed was enforced on a treadmill (50 stride cycles per condition). The extremities of motion (i.e., maximum flexion) for the hip and knee joints differed between conditions (0.2–3.8°). For two participants, the temporal asymmetry of gait was reduced on the treadmill. Initial data suggest that research on amputees simulating overground walking on a treadmill might need to be interpreted with some caution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine the relationship between visual impairment and functional status in a community-dwelling sample of older adults with glaucoma. Methods: This study included 74 community-dwelling older adults with open-angle glaucoma (aged 74 ± 6 years). Assessment of central vision included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from merged monocular Humphrey Field Analyser visual field plots. Functional status outcome measures included physical performance tests (6-min walk test, timed up and go test and lower limb strength), a physical activity questionnaire (Physical Activity Scale for the Elderly) and an overall functional status score. Correlation and linear regression analyses, adjusting for age and gender, examined the association between visual impairment and functional status outcomes. Results: Greater levels of visual impairment were significantly associated with lower levels of functional status among community-dwelling older adults with glaucoma, independent of age and gender. Specifically, lower levels of visual function were associated with slower timed up and go performance, weaker lower limb strength, lower self-reported physical activity, and lower overall functional status scores. Of the components of vision examined, the inferior visual field and contrast factors were the strongest predictors of these functional outcomes, whereas the superior visual field factor was not related to functional status. Conclusions: Greater visual impairment, particularly in the inferior visual field and loss of contrast sensitivity, was associated with poorer functional status among older adults with glaucoma. The findings of this study highlight the potential links between visual impairment and the onset of functional decline. Interventions which promote physical activity among older adults with glaucoma may assist in preventing functional decline, frailty and falls, and improve overall health and well-being.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the Kinaesthetic Fusion Effect (KFE) that was first described by Craske and Kenny in 1981. It was reported that when, without vision, participants pressed a button that resulted in a probe simultaneously touching the contralateral limb at a displaced location, they perceived an apparent change in limb length. The current study did not fully replicate these earlier findings. Participants did not perceive any reduction in the sagittal separation of the button and probe following repeated exposure to the tactile stimuli that was present on both arms. However, a localised and partial medio-lateral fusion was observed, with the touched positions seeming closer together. In addition, tactile acuity was found to decrease progressively for distal positions of the upper limb and a foreshortening effect was found which may result from a line-of-sight judgment and represent a feature of the reporting method used. A number of years have elapsed since the description of the original KFE. Although frequently cited in the literature, there has been no further investigation into the mechanisms of action. The results of the current study are considered in light of more recent literature concerning intersensory integration. Future research should focus on further clarification for the specific conditions that must be present for a fusion effect to occur. Finally, this thesis will benefit future studies that require participants to report the perceived locations of the unseen limbs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine the impact of different endotracheal tube (ETT) suction techniques on regional end-expiratory lung volume (EELV) and tidal volume (VT) in an animal model of surfactant-deficient lung injury. Methods: Six 2-week old piglets were intubated (4.0 mm ETT), muscle-relaxed and ventilated, and lung injury was induced with repeated saline lavage. In each animal, open suction (OS) and two methods of closed suction (CS) were performed in random order using both 5 and 8 French gauge (FG) catheters. The pre-suction volume state of the lung was standardised on the inflation limb of the pressure-volume relationship. Regional EELV and VT expressed as a proportion of the impedance change at vital capacity (%ZVCroi) within the anterior and posterior halves of the chest were measured during and for 60 s after suction using electrical impedance tomography. Results: During suction, 5 FG CS resulted in preservation of EELV in the anterior (nondependent) and posterior(dependent) lung compared to the other permutations, but these only reached significance in the anterior regions (p\0.001 repeated-measures ANOVA). VT within the anterior, but not posterior lung was significantly greater during 5FG CS compared to 8 FG CS; the mean difference was 15.1 [95% CI 5.1, 25.1]%ZVCroi. Neither catheter size nor suction technique influenced post-suction regional EELV or VT compared to pre-suction values (repeated-measures ANOVA). Conclusions: ETT suction causes transient loss of EELV and VT throughout the lung. Catheter size exerts a greater influence than suction method, with CS only protecting against derecruitment when a small catheter is used, especially in the non-dependent lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose Although plantar fascial thickening is a sonographic criterion for the diagnosis of plantar fasciitis, the effect of local loading and structural factors on fascial morphology are unknown. The purposes of this study were to compare sonographic measures of fascial thickness and radiographic measures of arch shape and regional loading of the foot during gait in individuals with and without unilateral plantar fasciitis and to investigate potential relationships between these loading and structural factors and the morphology of the plantar fascia in individuals with and without heel pain. Subjects The participants were 10 subjects with unilateral plantar fasciitis and 10 matched asymptomatic controls. Methods Heel pain on weight bearing was measured by a visual analog scale. Fascial thickness and static arch angle were determined from bilateral sagittal sonograms and weight-bearing lateral foot roentgenograms. Regional plantar loading was estimated from a pressure plate. Results On average, the plantar fascia of the symptomatic limb was thicker than the plantar fascia of the asymptomatic limb (6.1±1.4 mm versus 4.2±0.5 mm), which, in turn, was thicker than the fascia of the matched control limbs (3.4±0.5 mm and 3.5±0.6 mm). Pain was correlated with fascial thickness, arch angle, and midfoot loading in the symptomatic foot. Fascial thickness, in turn, was positively correlated with arch angle in symptomatic and asymptomatic feet and with peak regional loading of the midfoot in the symptomatic limb. Discussion and Conclusion The findings indicate that fascial thickness and pain in plantar fasciitis are associated with the regional loading and static shape of the arch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary This systematic review demonstrates that vitamin D supplementation does not have a significant effect on muscle strength in vitamin D replete adults. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Introduction The purpose of this study is to systematically review the evidence on the effect of vitamin D supplementation on muscle strength in adults. Methods A comprehensive systematic database search was performed. Inclusion criteria included randomised controlled trials (RCTs) involving adult human participants. All forms and doses of vitamin D supplementation with or without calcium supplementation were included compared with placebo or standard care. Outcome measures included evaluation of strength. Outcomes were compared by calculating standardised mean difference (SMD) and 95% confidence intervals. Results Of 52 identified studies, 17 RCTs involving 5,072 participants met the inclusion criteria. Meta-analysis showed no significant effect of vitamin D supplementation on grip strength (SMD −0.02, 95%CI −0.15,0.11) or proximal lower limb strength (SMD 0.1, 95%CI −0.01,0.22) in adults with 25(OH)D levels >25 nmol/L. Pooled data from two studies in vitamin D deficient participants (25(OH)D <25 nmol/L) demonstrated a large effect of vitamin D supplementation on hip muscle strength (SMD 3.52, 95%CI 2.18, 4.85). Conclusion Based on studies included in this systematic review, vitamin D supplementation does not have a significant effect on muscle strength in adults with baseline 25(OH)D >25 nmol/L. However, a limited number of studies demonstrate an increase in proximal muscle strength in adults with vitamin D deficiency. Keywords Muscle – Muscle fibre – Strength – Vitamin D