925 resultados para ADRENERGIC SIGNALING
Resumo:
CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.
Resumo:
Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing.
Resumo:
We assessed by immunohistochemistry the expression of the phosphorylated (activated) form of Smad1 and 5 (P-SMAD1/5), of Noggin and of two smooth muscle cell markers (α-SMA and SM22) in a series of human myometrium samples and in a smooth muscle cell line derived from human myometrium (HUt-SMC, PromoCell, USA). Myometrium samples were removed from two cadavers (a fetus at 26weeks of gestation and a neonate) and from ten non-menopausal women who underwent hysterectomy for adenomyosis and leiomyoma. P-SMAD1/5 expression was never detected in myometrium (both normal and pathological specimens), but only as a nuclear positive staining in glandular and luminal epithelial cells in sections in which also the endometrial mucosa was present. Noggin was strongly expressed especially in myometrium and adenomyosis samples from non-menopausal patients in comparison to the neonatal and fetal myometrium specimens in which muscle cells were less positive. In more than 95% of HUt-SMCs, α-SMA and Desmin were co-expressed, indicating a pure smooth muscle phenotype. When progesterone was added to the culture medium, no P-SMAD1/5 expression was detected, whereas the expression Noggin and SM22, a marker of differentiated smooth muscle cells, increased by 3 fold (p=0.002) and 4.3 fold (p=0.001), respectively (p=0.002). Our results suggest that, in non-menopausal normal human myometrium, the BMP pathway might be inhibited and that this inhibition might be enhanced by progesterone, which increases the differentiation of smooth muscle cells (SM22 levels). These findings could help in the identification of new mechanisms that regulate uterine motility.
Resumo:
BACKGROUND: Exposure to intermittent hypoxia (IH) may enhance cardiac function and protects heart against ischemia-reperfusion (I/R) injury. To elucidate the underlying mechanisms, we developed a cardioprotective IH model that was characterized at hemodynamic, biochemical and molecular levels. METHODS: Mice were exposed to 4 daily IH cycles (each composed of 2-min at 6-8% O2 followed by 3-min reoxygenation for 5 times) for 14 days, with normoxic mice as controls. Mice were then anesthetized and subdivided in various subgroups for analysis of contractility (pressure-volume loop), morphology, biochemistry or resistance to I/R (30-min occlusion of the left anterior descending coronary artery (LAD) followed by reperfusion and measurement of the area at risk and infarct size). In some mice, the phosphatidylinositide 3-kinase (PI3K) inhibitor wortmannin was administered (24 µg/kg ip) 15 min before LAD. RESULTS: We found that IH did not induce myocardial hypertrophy; rather both contractility and cardiac function improved with greater number of capillaries per unit volume and greater expression of VEGF-R2, but not of VEGF. Besides increasing the phosphorylation of protein kinase B (Akt) and the endothelial isoform of NO synthase with respect to control, IH reduced the infarct size and post-LAD proteins carbonylation, index of oxidative damage. Administration of wortmannin reduced the level of Akt phosphorylation and worsened the infarct size. CONCLUSION: We conclude that the PI3K/Akt pathway is crucial for IH-induced cardioprotection and may represent a viable target to reduce myocardial I/R injury.
Resumo:
Insect attack triggers changes in transcript level in plants that are mediated predominantly by jasmonic acid (JA). The implication of ethylene (ET), salicylic acid (SA), and other signals in this response is less understood and was monitored with a microarray containing insect- and defense-regulated genes. Arabidopsis thaliana mutants coi1-1, ein2-1, and sid2-1 impaired in JA, ET, and SA signaling pathways were challenged with the specialist small cabbage white (Pieris rapae) and the generalist Egyptian cotton worm (Spodoptera littoralis). JA was shown to be a major signal controlling the upregulation of defense genes in response to either insect but was found to suppress changes in transcript level only in response to P. rapae. Larval growth was affected by the JA-dependent defenses, but S. littoralis gained much more weight on coi1-1 than P. rapae. ET and SA mutants had an altered transcript profile after S. littoralis herbivory but not after P. rapae herbivory. In contrast, both insects yielded similar transcript signatures in the abscisic acid (ABA)-biosynthetic mutants aba2-1 and aba3-1, and ABA controlled transcript levels both negatively and positively in insect-attacked plants. In accordance with the transcript signature, S. littoralis larvae performed better on aba2-1 mutants. This study reveals a new role for ABA in defense against insects in Arabidopsis and identifies some components important for plant resistance to herbivory.
Resumo:
Follicular helper T (TFH) cells are specialized in providing help for B cell differentiation and Ab secretion. Several positive and negative regulators of TFH cell differentiation have been described but their control is not fully understood. In this study, we show that Notch signaling in T cells is a major player in the development and function of TFH cells. T cell-specific gene ablation of Notch1 and Notch2 impaired differentiation of TFH cells in draining lymph nodes of mice immunized with T-dependent Ags or infected with parasites. Impaired TFH cell differentiation correlated with deficient germinal center development and the absence of high-affinity Abs. The impact of loss of Notch on TFH cell differentiation was largely independent of its effect on IL-4. These results show a previously unknown role for Notch in the regulation of TFH cell differentiation and function with implications for the control of this T cell population.
Resumo:
Catecholamines as well as phorbol esters can induce the phosphorylation and desensitization of the alpha1B-adrenergic receptor (alpha1BAR). In this study, phosphoamino acid analysis of the phosphorylated alpha1BAR revealed that both epinephrine- and phorbol ester-induced phosphorylation predominantly occurs at serine residues of the receptor. The findings obtained with receptor mutants in which portions of the C-tail were truncated or deleted indicated that a region of 21 amino acids (393-413) of the carboxyl terminus including seven serines contains the main phosphorylation sites involved in agonist- as well as phorbol ester-induced phosphorylation and desensitization of the alpha1BAR. To identify the serines invoved in agonist- versus phorbol ester-dependent regulation of the receptor, two different strategies were adopted, the seven serines were either substituted with alanine or reintroduced into a mutant lacking all of them. Our findings indicate that Ser394 and Ser400 were phosphorylated following phorbol ester-induced activation of protein kinase C, whereas Ser404, Ser408, and Ser410 were phosphorylated upon stimulation of the alpha1BAR with epinephrine. The observation that overexpression of G protein-coupled kinase 2 (GRK2) could increase agonist-induced phosphorylation of Ser404, Ser408, and Ser410, strongly suggests that these serines are the phosphorylation sites of the alpha1BAR for kinases of the GRK family. Phorbol ester-induced phosphorylation of the Ser394 and Ser400 as well as GRK2-mediated phosphorylation of the Ser404, Ser408, and Ser410, resulted in the desensitization of alpha1BAR-mediated inositol phosphate response. This study provides generalities about the biochemical mechanisms underlying homologous and heterologous desensitization of G protein-coupled receptors linked to the activation of phospholipase C.
Resumo:
Résumé L'influence des hormones reproductives sur le développement du cancer du sein a été établie au travers de nombreuse études épidémiologiques. Nous avons précédemment démontré que le gène Wnt-4 est un médiateur essentiel de la progestérone dans le développement lobulo-alvéolaire de l'épithélium mammaire. De plus, le rôle de la voie de signalisation Wnt dans la tumorigénèse de la glande mammaire mutine est largement établi. Pour comprendre sa fonction dans le cancer du sein, nous avons activée cette voie en surexprimant le gène Wnt-1 dans des cellules épithéliales primaires de sein, au moyen d'un rétrovirus. Ceci a conduit à la transformation oncogénique de ces cellules et à l'obtention d'un modèle de carcinogénèse du sein dénommé Wnt-1 HMEC. L'analyse de l'expression des gènes induits par la surexpression de Wnt-1 dans ces cellules, a permis d'identifier les gènes BMP4 et 7. Alors que des analyses de RT-PCR ont montré leur forte expression dans les cellules Wnt-1-HMECs, la présence d'une grande quantité de la protéine BMP7 a été constatée dans les tumeurs dérivées de ces cellules. L'importante phosphorylation des Smad 1, 5, S dans les Wnt-1 HMECs indique l'activation de la voie BMP, possiblement due à la stimulation ce celle-ci par BMP7. L'activation de la voie Wnt par la ß-Caténine, conduit à la transcription de BMP7, identifiant ainsi ce gène comme un gène cible de la voie canonique. La pertinence de nos observations a par ailleurs été confirmée par le fait que BMP7 est surexprimé dans les tumeurs de seins humains. Afin d'élucider la fonction de la voie BMP dans le sein, nous avons utilisé le modèle mutin. L'expression du gène BMP7 dans les souris transgéniques MMTV Wnt-1 s'est avérée élevée, démontrant qu'il est aussi un gène cible de la voie Wnt in-vivo. L'expression de l'ARN messager .codant pour la protéine BMP7 est induite lors du développement lobulo-alvéolaire, qui se fait sous l'influence de la progestérone et de Wnt-4. Ensemble, ces observations corroborent le fait qu'une stimulation avec de la progestérone suffit à induire la transcription du gène dans les 24h. Nos résultats coïncident d'autre part avec le fait que BMP7 est exprimé dans la couche myoépithéliale de l'épithélium où la voie Wnt est activée. L'analyse de souris reportrices de l'activité de la voie BMP, suggère une activation dans la couche luminale de l'épithélium durant tout le développement de la glande mammaire. Curieusement, cette même voie est active dans le mésenchyme lors de la mammogénèse embryonnaire. Finalement, nos analyses d'immunofluorescence démontrent la capacité de prolifération des cellules ayant activé BMP, ainsi que leur nette ségrégation d'avec les cellules exprimant le récepteur à la progestérone. Nos résultats démontrent que le gène BMP7 est un gène cible de la voie Wnt canonique dans le sein. Son expression dans la couche myoépitheliale est induite par Wnt-4, lui-même sécrété par les cellules luminales sensibles à la progestérone. La sécrétion de la protéine BMP7 conduit finalement à l'activation de la voie BMP dans les cellules négatives pour le récepteur à la progestérone. Abstract Epidemiological studies highlight the repetitive exposure to circulating progesterone as a major risk in the development of breast cancer. Work in our laboratory showed that Wnt-4 is an essential mediator of progesterone-driven side-branch formation, while Wnt signaling has long been established as strongly oncogenic in the mouse mammary gland. To address the role of Wnt in breast tumorigenesis we activated the pathway in primary human breast epithelial cells by means of refroviral Wnt-1 expression. This resulted in a Wnt1-induced breast carcinogenesis model, being referred to as Wnt-1-HMECs. Gene expression profiling revealed the Bone Morphogenetic Protein 4 and 7 (BMP4 and 7) a mong the most upregulated gene by ectopic Wnt-1 expression in primary HMECs. RT-PCR analysis confirmed elevated BMP4 and 7 mRNA levels in Wnt-1-infected HMECs, as well as strong BMP7 expression in the tumors derived from these cells. Smad 1, 5, 8 phosphorylation was high in Wnt-1HMECs whereas below detection limit in primary HMECs suggesting that the increased expression of BMP-7 results in activation of downstream signaling. Ectopic expressíon of a stabilized form of ßcatenin in primary HMECs resulted in increased transcription of BMP-7 suggesting that it is a target of canonical Wnt signaling. The clinical relevance of our observations was confirmed by the finding of BMP7 being upregulated in human breast tumor samples. To elucidate the role of BMP ligands in the breast in-vivo, we made use of the mouse model. Expression of the BMP7 gene was found to be increased in MMTV-Wnt-1 transgenic animals, suggesting that BMP7 may also be a Wnt 1 target gene in vivo. Expression of BMP7 was upregulated in mid-pregnancy which coincides with progesterone/Wnt induced side branching. BMP7 was induced within 24 hours by progesterone. Consistent with it being a target of canonical Wnt signaling, we demonstrated preferential expression of this ligand in the myoepithelial cells, the target cells of Wnt signals. In-vivo analysis of BMP signaling using a reporter mouse revealed the activation of the pathway in the luminal layer of the epithelium throughout postnatal development. Interestingly, during embryonic mammogenesis the pathway was found to be active in the mesenchyme. Immunofluorescence studies demonstrated that cells with BMP activity can proliferate. They also revealed a clear segregation between progesterone receptor positive cells and cells with active BMP signaling. Together our observations suggest that BMP-7 is a canonical Wnt signaling target both in HMECs and in the mouse mammary gland in-vivo. It is expressed in the myoepithelium possibly in response to Wnt-4, which is secreted by steroid receptor positive cells in response to progesterone. BMP-7 in turn may impinge on lumina) epithelial cells and activate BMP signaling in PR negative cells.
Resumo:
The Notch signaling pathway regulates many aspects of embryonic development, as well as differentiation processes and tissue homeostasis in multiple adult organ systems. Disregulation of Notch signaling is associated with several human disorders, including cancer. In the last decade, it became evident that Notch signaling plays important roles within the hematopoietic and immune systems. Notch plays an essential role in the development of embryonic hematopoietic stem cells and influences multiple lineage decisions of developing lymphoid and myeloid cells. Moreover, recent evidence suggests that Notch is an important modulator of T cell-mediated immune responses. In this review, we discuss Notch signaling in hematopoiesis, lymphocyte development, and function as well as in T cell acute lymphoblastic leukemia.
Resumo:
Recent clinical research suggests a role for vitamin D in the response to IFN-α-based therapy of chronic hepatitis C. Therefore, we aimed to explore the underlying mechanisms in vitro. Huh-7.5 cells harboring subgenomic hepatitis C virus (HCV) replicons or infected with cell culture-derived HCV were exposed to bioactive 1,25-dihydroxyvitamin D3 (calcitriol) with or without IFN-α. In these experiments, calcitriol alone had no effect on the HCV life cycle. However, calcitriol enhanced the inhibitory effect of IFN-α on HCV replication. This effect was based on a calcitriol-mediated increase of IFN-α-induced gene expression. Further mechanistic studies revealed a constitutive inhibitory interaction between the inactive vitamin D receptor (VDR) and Stat1, which was released upon stimulation with calcitriol and IFN-α. As a consequence, IFN-α-induced binding of phosphorylated Stat1 to its DNA target sequences was enhanced by calcitriol. Importantly, and in line with these observations, silencing of the VDR resulted in an enhanced hepatocellular response to IFN-α. Our findings identify the VDR as a novel suppressor of IFN-α-induced signaling through the Jak-STAT pathway.
Resumo:
Rapport de synthèse : Le monoxyde d'azote (NO) joue un rôle important dans la régulation de l'homéostasie du système cardiovasculaire et du glucose. Les souris déficientes pour le gène codant l'isoforme neuronale de la synthase de monoxyde d'azote (nNOS) sont résistantes à l'insuline, mais les mécanismes sous-jacents sont inconnus. Le manque de NO produit par la nNOS pourrait être à l'origine d'une diminution de la perfusion du muscle squelettique et ainsi d'une diminution de l'apport de substrat. Alternativement, le déficit de nNOS normalement hautement exprimé dans le tissu musculaire squelettique pourrait directement y perturber la consommation de glucose. Finalement l'absence de l'action sympatholytique du NO neuronal pourrait diminuer la sensibilité à l'insuline. Afin de tester ces hypothèses nous avons étudié, chez des souris déficientes en nNOS et des souris-contrôle, la consommation corporelle totale de glucose et le flux musculaire squelettique pendant des clamps hyperinsulinémiques euglycémiques in vivo, ainsi que la consommation de glucose dans le muscle squelettique in vitro. De plus nous avons analysé les effets d'une inhibition alpha-adrénergique sur la consommation de glucose pendant les clamps hyperinsulinémiques euglycémiques in vivo. Le taux de perfusion de glucose pendant les clamps était grossièrement 15 pourcent plus bas (P<0.001) chez les souris déficientes en nNOS que chez les souris-contrôle. Cette résistance à l'insuline chez les souris déficientes en nNOS n'était due ni à une stimulation déficiente du flux sanguin musculaire par l'insuline ni à un défaut intrinsèque de la consommation de glucose du muscle (qui étaient comparables dans les deux groupes), mais à un mécanisme alpha-adrénergique, car l'administration de phentolamine rétablissait la sensibilité à l'insuline chez les souris déficientes en nNOS. Ces résultats suggèrent qu'une hyperactivité sympathique, potentiellement due à la perte de l'inhibition neuronale centrale du flux sympathique par le NO provenant de nNOS, contribue à la résistance à l'insuline des souris déficientes en nNOS. Par ailleurs ces résultats tendent à prouver qu'un défaut de production de NO provoquerait une résistance à l'insuline par des mécanismes différents selon l'isoforme de NO synthase déficiente (par exemple chez les souris déficientes pour la forme endothéliale de NO synthase, il a été montré que la résistance à l'insuline est due à un défaut de stimulation de la perfusion musculaire par l'insuline et à un défaut du signalling de l'insuline dans la cellule musculaire squelettique). Chez l'être humain il est établi que les états de résistance à l'insuline sont associés à une synthèse défectueuse et/ou une mauvaise biodisponibilité du NO, ainsi qu'à une hyperactivité sympathique. Nous spéculons que la perte d'inhibition centrale du flux sympathique représente un mécanisme contribuant à la résistance à l'insuline et ses complications cardiovasculaires chez l'être humain.
Resumo:
Tenascin-C (TNC) expression is known to correlate with malignancy in glioblastoma (GBM), a highly invasive and aggressive brain tumor that shows limited response to conventional therapies. In these malignant gliomas as well as in GBM cell lines, we found Notch2 protein to be strongly expressed. In a GBM tumor tissue microarray, RBPJk protein, a Notch2 cofactor for transcription, was found to be significantly coexpressed with TNC. We show that the TNC gene is transactivated by Notch2 in an RBPJk-dependent manner mediated by an RBPJk binding element in the TNC promoter. The transactivation is abrogated by a Notch2 mutation, which we detected in the glioma cell line Hs683 that does not express TNC. This L1711M mutation resides in the RAM domain, the site of interaction between Notch2 and RBPJk. In addition, transfection of constructs encoding activated Notch2 or Notch1 increased endogenous TNC expression identifying TNC as a novel Notch target gene. Overexpression of a dominant negative form of the transcriptional coactivator MAML1 or knocking down RBPJk in LN319 cells led to a dramatic decrease in TNC protein levels accompanied by a significant reduction of cell migration. Because addition of purified TNC stimulated glioma cell migration, this represents a mechanism for the invasive properties of glioma cells controlled by Notch signaling and defines a novel oncogenic pathway in gliomagenesis that may be targeted for therapeutic intervention in GBM patients.
Resumo:
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.
Resumo:
Jasmonates control defense gene expression and male fertility in the model plant Arabidopsis thaliana. In both cases, the involvement of the jasmonate pathway is complex, involving large-scale transcriptional reprogramming. Additionally, jasmonate signaling is hard-wired into the auxin, ethylene, and salicylate signal networks, all of which are under intense investigation in Arabidopsis. In male fertility, jasmonic acid (JA) is the essential signal intervening both at the level of anther elongation and in pollen dehiscense. A number of genes potentially involved in jasmonate-dependent anther elongation have recently been discovered. In the case of defense, at least two jasmonates, JA and its precursor 12-oxo-phytodienoic acid (OPDA), are necessary for the fine-tuning of defense gene expression in response to various microbial pathogens and arthropod herbivores. However, only OPDA is required for full resistance to some insects and fungi. Other jasmonates probably affect yet more physiological responses. A series of breakthroughs have identified the SKP/CULLIN/F-BOX (SCF), CORONATINE INSENSITIVE (COI1) complex, acting together with the CONSTITUTIVE PHOTOMORPHOGENIC 9 (COP9) signalosome, as central regulatory components of jasmonate signaling in Arabidopsis. The studies, mostly involving mutational approaches, have paved the way for suppressor screens that are expected to further extend our knowledge of jasmonate signaling. When these and other new mutants affecting jasmonate signaling are characterized, new nodes will be added to the Arabidopsis Jasmonate Signaling Pathway Connections Map, and the lists of target genes regulated by jasmonates in Arabidopsis will be expanded.
Resumo:
Hormone receptors are expressed in more than 75% of breast cancer. Therefore, two prescription modalities of endocrine therapy could be proposed: either sequential or concomitant to breast cancer irradiation. If combined to radiotherapy, is endocrine therapy a radiosensitizer? Does endocrine therapy enhance the risk factor of radio-induced toxicity? Here, we will distinguish the interaction of ionizing radiation combined with therapies targeting oestrogen receptor (REα) from the interaction of ionizing radiation with oestrogen. This review aims at making clear all these items.