913 resultados para 7-hydroxylase Activity
Resumo:
BACKGROUND: There is increasing evidence for the clinical relevance of mucosal healing (MH) as therapeutic treatment goal in inflammatory bowel disease (IBD). We aimed to investigate by which method gastroenterologists monitor IBD activity in daily practice. METHODS: A questionnaire was sent to all board-certified gastroenterologists in Switzerland to specifically address their strategy to monitor IBD between May 2009 and April 2010. RESULTS: The response rate was 57% (153/270). Fifty-two percent of gastroenterologists worked in private practice and 48% worked in hospitals. Seventy-eight percent judged clinical activity to be the most relevant criterion for monitoring IBD activity, 15% chose endoscopic severity, and 7% chose biomarkers. Seventy percent of gastroenterologists based their therapeutic decisions on clinical activity, 24% on endoscopic severity, and 6% on biomarkers. The following biomarkers were used for IBD activity monitoring: CRP, 94%; differential blood count, 78%; fecal calprotectin (FC), 74%; iron status, 63%; blood sedimentation rate, 3%; protein electrophoresis, 0.7%; fecal neutrophils, 0.7%; and vitamin B12, 0.7%. Gastroenterologists in hospitals and those with ≤ 10 years of professional experience used FC more frequently compared with colleagues in private practice (P=0.035) and those with > 10 years of experience (P<0.001). CONCLUSIONS: Clinical activity is judged to be more relevant for monitoring IBD activity and guiding therapeutic decisions than endoscopic severity and biomarkers. As such, the accumulating scientific evidence on the clinical impact of mucosal healing does not yet seem to influence the management of IBD in daily gastroenterologic practice.
Resumo:
BACKGROUND: Congenital diaphragmatic hernia (CDH) is associated with pulmonary hypertension and death. Administration of nitric oxide (NO) alone remains ineffective in CDH cases. We investigated in near full-term lambs with and without CDH the role of guanylate cyclase (GC), the enzyme activated by NO in increasing cyclic 3'-5'-guanylosine monophosphate, and the role of phosphodiesterase (PDE) 5, the enzyme-degrading cyclic 3'-5'-guanylosine monophosphate. METHODS: Congenital diaphragmatic hernia was surgically created in fetal lambs at 85 days of gestation. Pulmonary hemodynamics were assessed by means of pressure and blood flow catheters (135 days). In vitro, we tested drugs on rings of isolated pulmonary vessels. RESULTS: In vivo, sodium nitroprusside, a direct NO donor, and methyl-2(4-aminophenyl)-1,2-dihydro-1-oxo-7-(2-pyridinylmethoxy)-4-(3,4,5 trimethoxyphenyl)-3-isoquinoline carboxylate sulfate (T-1032) and Zaprinast, both PDE 5 blockers, reduced pulmonary vascular resistance in CDH and non-CDH animals. The activation of GC by sodium nitroprusside and the inhibition of PDE 5 by T-1032 were less effective in CDH animals. In vitro, the stimulation of GC by 3(5'hydroxymethyl-2'furyl)-1-benzyl indazole (YC-1) (a benzyl indazole derivative) and the inhibition of PDE 5 by T-1032 were less effective in pulmonary vascular rings from CDH animals. The YC-1-induced vasodilation in rings from CDH animals was higher when associated with the PDE 5 inhibitor T-1032. CONCLUSIONS: Guanylate cyclase and PDE 5 play a role in controlling pulmonary vascular tone in fetal lambs with or without CDH. Both enzymes seem to be impaired in fetal lambs with CDH.
Resumo:
Increasing antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the activity of fosfomycin alone and in combination with vancomycin, daptomycin, rifampin, and tigecycline against MRSA (ATCC 43300) in a foreign-body (implantable cage) infection model. The MICs of the individual agents were as follows: fosfomycin, 1 μg/ml; daptomycin, 0.125 μg/ml; vancomycin, 1 μg/ml; rifampin, 0.04 μg/ml; and tigecycline, 0.125 μg/ml. Microcalorimetry showed synergistic activity of fosfomycin and rifampin at subinhibitory concentrations against planktonic and biofilm MRSA. In time-kill curves, fosfomycin exhibited time-dependent activity against MRSA with a reduction of 2.5 log10 CFU/ml at 128 × the MIC. In the animal model, planktonic bacteria in cage fluid were reduced by <1 log10 CFU/ml with fosfomycin and tigecycline, 1.7 log10 with daptomycin, 2.2 log10 with fosfomycin-tigecycline and fosfomycin-vancomycin, 3.8 log10 with fosfomycin-daptomycin, and >6.0 log10 with daptomycin-rifampin and fosfomycin-rifampin. Daptomycin-rifampin cured 67% of cage-associated infections and fosfomycin-rifampin cured 83%, whereas all single drugs (fosfomycin, daptomycin, and tigecycline) and rifampin-free fosfomycin combinations showed no cure of MRSA cage-associated infections. No emergence of fosfomycin resistance was observed in animals; however, a 4-fold increase in fosfomycin MIC (from 2 to 16 μg/ml) occurred in the fosfomycin-vancomycin group. In summary, the highest eradication of MRSA cage-associated infections was achieved with fosfomycin in combination with rifampin (83%). Fosfomycin may be used in combination with rifampin against MRSA implant-associated infections, but it cannot replace rifampin as an antibiofilm agent.
Resumo:
The concentration of orthophosphate ions released from Fe-K-P compounds (Fe3KH8(PO4)6 .6H2O and Fe3KH14(PO4)8 .4H2O) present in superphosphates increases with pH, which initially suggests that the agronomic effectiveness of P fertilizers containing high amounts of these compounds would also increase with soil pH but studies considering activity, instead of concentration, are necessary. With this purpose, both compounds were synthesized under laboratory conditions, characterized by elemental chemical analysis, optical microscopy, X ray diffractometry, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), and used in a solubility study. Solutions of 0.01, 0.05 and 0.1 mol L-1 NaCl with pH adjusted to 3.0, 4.0, 5.0, 5.5, 6.0, 6.5, 7.0 and 7.5 were prepared for the solubility study of H8-syn, H14-syn and a phosphate rock (PR) from Brazil. The orthophosphate activity as H2PO4- and HPO4(2-) was calculated in each situation as related to pH and ionic strength using software MINTEQ. The remaining precipitates after equilibrium were chemically analyzed and subjected to X ray, SEM and EDS. Results of chemical analysis and instrumental techniques confirmed the preparation method. The activity of orthophosphate ions of both compounds tended to decrease under increasing pH and/or ionic strength of the solution, which in turn suggests that an increase in the solution pH does not necessarily promote an increase in the P bioavailability for plant uptake. This can be important when evaluating agronomic data of P fertilizers with high contents of these two Fe-K-P compounds.
Resumo:
The integrity and function of neurons depend on their continuous interactions with glial cells. In the peripheral nervous system glial functions are exerted by Schwann cells (SCs). SCs sense synaptic and extrasynaptic manifestations of action potential propagation and adapt their physiology to support neuronal activity. We review here existing literature data on extrasynaptic bidirectional axon-SC communication, focusing particularly on neuronal activity implications. To shed light on underlying mechanisms, we conduct a thorough analysis of microarray data from SC-rich mouse sciatic nerve at different developmental stages and in neuropathic models. We identify molecules that are potentially involved in SC detection of neuronal activity signals inducing subsequent glial responses. We further suggest that alterations in the activity-dependent axon-SC crosstalk impact on peripheral neuropathies. Together with previously reported data, these observations open new perspectives for deciphering glial mechanisms of neuronal function support.
Resumo:
The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol¿anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-D-aspartic acid (NMDA)¿mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6¿PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.
Resumo:
OBJECTIVE: We investigated whether the oral administration of a low dose (75 micro g) of midazolam, a CYP3A probe, can be used to measure the in vivo CYP3A activity. METHODS: Plasma concentrations of midazolam, 1'OH-midazolam and 4'OH-midazolam were measured after the oral administration of 7.5 mg and 75 micro g midazolam in 13 healthy subjects without medication, in four subjects pretreated for 2 days with ketoconazole (200 mg b.i.d.), a CYP3A inhibitor, and in four subjects pretreated for 4 days with rifampicin (450 mg q.d.), a CYP3A inducer. RESULTS: After oral administration of 75 micro g midazolam, the 30-min total (unconjugated + conjugated) 1'OH-midazolam/midazolam ratios measured in the groups without co-medication, with ketoconazole and with rifampicin were (mean+/-SD): 6.23+/-2.61, 0.79+/-0.39 and 56.1+/-12.4, respectively. No side effects were reported by the subjects taking this low dose of midazolam. Good correlations were observed between the 30-min total 1'OH-midazolam/midazolam ratio and midazolam clearance in the group without co-medication (r(2)=0.64, P<0.001) and in the three groups taken together (r(2)=0.91, P<0.0001). Good correlations were also observed between midazolam plasma levels and midazolam clearance, measured between 1.5 h and 4 h. CONCLUSION: A low oral dose of midazolam can be used to phenotype CYP3A, either by the determination of total 1'OH-midazolam/midazolam ratios at 30 min or by the determination of midazolam plasma levels between 1.5 h and 4 h after its administration.
Resumo:
Daptomycin is a promising candidate for local treatment of bone infection due to its activity against multi-resistant staphylococci. We investigated the activity of antibiotic-loaded PMMA against Staphylococcus epidermidis biofilms using an ultra-sensitive method bacterial heat detection method (microcalorimetry). PMMA cylinders loaded with daptomycin alone or in combination with gentamicin or PEG600, vancomycin and gentamicin were incubated with S. epidermidis-RP62A in tryptic soy broth (TSB) for 72h. Cylinders were thereafter washed and transferred in microcalorimetry ampoules pre-filled with TSB. Bacterial heat production, proportional to the quantity of biofilm on the PMMA, was measured by isothermal microcalorimetry at 37°C. Heat detection time was considered time to reach 20μW. Experiments were performed in duplicate. The heat detection time was 5.7-7.0h for PMMA without antibiotics. When loaded with 5% of daptomycin, vancomycin or gentamicin, detection times were 5.6-16.4h, 16.8-35.7h and 4.7-6.2h, respectively. No heat was detected when 5% gentamicin or 0.5% PEG600 was added to the daptomycin-loaded PMMA. The study showed that vancomycin was superior to daptomycin and gentamicin in inhbiting staphylococcal adherence in vitro. However, PMMA loaded with daptomycin combined with gentamicin or PEG600 completely inhibited S. epidermidis-biofilm formation. PMMA loaded with these combinations may represent effective strategies for local treatment in the presence of multi-resistant staphylococci.
Resumo:
The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.
Resumo:
Selostus: Kasvatushäkin ympäristön vaikutus hopeakettujen käyttäytymiseen
Resumo:
Selostus: Tarhattujen sinikettujen vuodenaikainen ja vuorokautinen aktiivisuus
Resumo:
The c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase (MAPK) activated by stress-signals and involved in many different diseases. Previous results proved the powerful effect of the cell permeable peptide inhibitor d-JNKI1 (d-retro-inverso form of c-Jun N-terminal kinase-inhibitor) against neuronal death in CNS diseases, but the precise features of this neuroprotection remain unclear. We here performed cell-free and in vitro experiments for a deeper characterization of d-JNKI1 features in physiological conditions. This peptide works by preventing JNK interaction with its c-Jun N-terminal kinase-binding domain (JBD) dependent targets. We here focused on the two JNK upstream MAPKKs, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7), because they contain a JBD homology domain. We proved that d-JNKI1 prevents MKK4 and MKK7 activity in cell-free and in vitro experiments: these MAPKK could be considered not only activators but also substrates of JNK. This means that d-JNKI1 can interrupt downstream but also upstream events along the JNK cascade, highlighting a new remarkable feature of this peptide. We also showed the lack of any direct effect of the peptide on p38, MEK1, and extracellular signal-regulated kinase (ERK) in cell free, while in rat primary cortical neurons JNK inhibition activates the MEK1-ERK-Ets1/c-Fos cascade. JNK inhibition induces a compensatory effect and leads to ERK activation via MEK1, resulting in an activation of the survival pathway-(MEK1/ERK) as a consequence of the death pathway-(JNK) inhibition. This study should hold as an important step to clarify the strong neuroprotective effect of d-JNKI1.