897 resultados para 300302 Plant Growth and Development
Resumo:
We examined 536 permit (Trachinotus falcatus, 65–916 mm FL) collected from the waters of Florida Keys and from the Tampa Bay area on Florida’s Gulf coast to describe their growth and reproduction.Among permit that we sexed, females ranged from 266 to 916 mm in length (mean=617) and males ranged from 274 to 855 mm (mean=601). Ages of 297 permit ranging from 102 to 900 mm FL were estimated from thin-sectioned otoliths (sagittae). The large proportion of otoliths with an annulus on the margin and an otolith from an OTC-injected fish suggested that a single annulus was formed each year during late spring or early summer.Permit reach a maximum age of at least 23 years.Permit grew rapidly until an age of about five years, and then growth slowed considerably. Male and female von Bertalanffy growth models were not significantly different, and the sexes-combined growth model was FL=753.1(1–e –0.348(Age+0.585)). Gonad development was seasonal, and spawning occurred during late spring and summer over artificial and natural reefs at depths of 10–30 m. Ovaries that contained oocytes in the final stages of oocyte maturation or postovulatory follicles were found during May–July. We estimated that 50% of the females in the population had reached sexual maturity by 547 mm and an age of 3.1 years and that 50% of the males in the population had reached sexual maturity by 486 mm and an age of 2.3 years. Because Florida regulations restrict the maximum size of permit caught in recreational and commercial fisheries to 20-inch (508-mm), most fish harvested are sexually immature. With the current size selectivity of the fishery, the spawning stock biomass of permit could decrease quickly in response to moderate levels of fishing mortality; thus, the regulations in place in Florida to restrict harvest levels appear to be justified.
Resumo:
The developing vertebrate gut tube forms a reproducible looped pattern as it grows into the body cavity. Here we use developmental experiments to eliminate alternative models and show that gut looping morphogenesis is driven by the homogeneous and isotropic forces that arise from the relative growth between the gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates. A simple physical mimic, using a differentially strained composite of a pliable rubber tube and a soft latex sheet is consistent with this mechanism and produces similar patterns. We devise a mathematical theory and a computational model for the number, size and shape of intestinal loops based solely on the measurable geometry, elasticity and relative growth of the tissues. The predictions of our theory are quantitatively consistent with observations of intestinal loops at different stages of development in the chick embryo. Our model also accounts for the qualitative and quantitative variation in the distinct gut looping patterns seen in a variety of species including quail, finch and mouse, illuminating how the simple macroscopic mechanics of differential growth drives the morphology of the developing gut.
Resumo:
The sensitivity of Lagenidium, isolated from Penaeus monodon, Scylla serrata , to 34 antimycotics was determined. Effects on the development of vesicles, zoospores and mycelial growth were evaluated. Although mycoidal levels of the chemicals tested will be ideal for lethal treatment on control of the fungus, the high dose required may be lethal to the host, thus the use of mycostatic concentrations is more practical. Treatments of rearing water containing larvae, adult shrimps or crabs should be done only after preliminary tolerance experiments using at least the mycostatic dose prove to be safe for the hosts. Mycocidal doses can be used for determining disinfection doses of equipment and facilities used in rearing procedures as well as for destroying batches of infected larvae.
Resumo:
Growth and survival rates of hatchery-produced and wild milkfish (Chanos chanos ) fry grown to fingerling size were compared. Data show no significant difference between the 2 fry. At a recommended stocking density of 30 fry/m super(2), hatchery-produced milkfish fry could attain fingerling size of almost 2g with a survival of 68%. The study indicates that hatchery-produced fry/fingerlings can equal the culture performance of the wild fry. Comparative performance of hatchery-bred and wild fry should encourage intensified research on milkfish broodstock development and refinement of induced spawning methods.
Resumo:
Penaeus monodon and P. indicus juveniles were stocked and reared for about 3 months in earthen ponds at different density combinations with Chanos chanos. The presence of either Penaeus species at any density ratio did not affect significantly the C. chanos survival. Survival rates of the penaeids indicated that intraspecific and interspecific competition occurred and were reduced with the reduction in stocking rate. It is concluded that further studies on higher density ratios and feeding and economic consideration would be of help to the development of this kind of fishpond management system.
Resumo:
In the present research, a total of 207 pieces of fish from 25 sampling stations in Gilan Province coasts in the years 2001-2002 were biologically studied in terms of their growth and development, reproduction and feeding. The average length and weight of the fishes are increased, as they get older. The highest index of length and weight growth is observed in the years 1 to 2. As the age increases, gradient of length and weight growth diagrams decrease. In studying the relation between length and weight, it was observed that proportionate to the total length, the weight is increased progressively. The fatness coefficient index in the initial years of life and prior to maturity is higher than the post maturity period. As the age increases, the decrease of this index is observable. The fatness coefficient index rate is directly related to index of fullness. The highest Gonadosomatic Index is seen in the months of June and July, i.e. at the times of spawning; and the lowest index rate is observed in the months of November and December. The appropriate temperature for reproduction of these species is from 18 to 22 degree centigrade. The Gonadosomatic Index is higher in spring and summer seasons as compared with autumn and winter. Besides, as the fishes become aged, the amount of the said index increases in a manner that the gradient of it in the years to maturity is less than the maturity time and thereafter. Sexual maturity stages in different months are directly related to Gonadosomatic index, and increase as the age increases. The sexual ratio of male fishes to the female fishes in terms of number is plus one prior to maturity; about one at the time of maturity and minus after maturity. In general the frequency of male fishes as compared with female fishes in all group ages is approximately two times. The fecundity mean, and the diameter and the rate of eggs will substantially increase, as the Gonadosomatic index rises. The maturity age in the male fishes is 3 to 4 years and in female fishes is 4 to 5 years. The spawning of this species in rivers occurs repeatedly and in different time intervals, and do not take place once (Asyncronous). The Gastrosomatic index is directly related to index of fullness and will decrease, as the age increases. The index of fullness is relatively the months of April and May. The underlying reason is the need of the fishes to energy for reproduction. As the spawning time commences, the index of fullness moves down and the downward direction continues. After spa g mg and reduction of the volume of energy in the body, the index of fullness rises, and it will be substantially high until the beginning of fall. In fall and winter as it gets cold, the index of fullness moves downward and the body fat deposits are used. A correlation is shown between the changes in vacuity index and fullness indices. This means that as the fullness index rises, the vacuity index decreases, and vice versa. The Hepatosomatic index prior to the reproduction is at the highest amount and after spawning is at the lowest. No correlation is observed between the fullness and Hepatosomatic indices. In other words reproduction is an inherent and instinct originated matter; and its cycle goes on, alternately and in an orderly manner, upon completion of germinal cells, even when it coincides with reduction or stoppage of somatic cell growth. The rising trend of Hepatosomatic starts in August and will continue until the next July. The volume of fat around digestive tract is severely reduced in early spring and this trend will reach its apex in summer season. In the cold seasons, i.e. the fall and winter, the accumulation of fat around digestive tract increases. Consequently, a meaningful and inverse relation is observed between index of fullness, also the progress of sexual maturity stages and the volume of fat.
Resumo:
Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains induced by thermal effects or active materials in layered plates are extensively used to control the curvature of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterised by direct bending strains through the thickness, and the second mode, mainly apparent in biological systems, is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown that buckling is common to both modes, leading to bistable shapes: growth from bending strains results in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-, bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore, it is shown that certain combinations of growth modes result in a free, or natural, response in which the doubly curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may help to realise more effective actuation schemes for engineering structures. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group III precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.