903 resultados para 100501 Antennas and Propagation
Resumo:
In this paper a low cost man-pack antenna for satellite communications at X band is presented. The antenna has dual circular polarization in Tx and Rx.
Resumo:
The Space Situational Awareness (SSA) program from the European Space Agency (ESA) protects Europe's citizens and their satellite-based services by detecting space hazards. ESA Ground Systems (GS) division is currently designing a phased array radar composed of thousands of radiating elements for future stages of the SSA program [1]. The radar shall guarantee the detection of most of the Low Earth Orbit (LEO) space debris, providing a general map of space junk. While range accuracy is mainly dictated by the radar waveform, the detection and tracking of small objects in LEO regimes is highly dependent on the angular accuracy achieved by the smart phased array antenna, demonstrating the important of the performance of this architecture.
Resumo:
Nowadays, earth stations have as a common feature the use of large reflector antenna for downloading data from satellites. Large reflectors have impairments such as mechanical complexity, low flexibility and high cost. Thus, the feasibility of other antenna technologies must be evaluated, such as conformal adaptive antennas based on multiple planar active arrays. In the scenery under study, the capability to track several satellites simultaneously, higher flexibility, lower production and maintenance cost, modularity and a more efficient use of the spectrum; are the most important advantage to boost up active antenna arrays over large dishes.
Resumo:
In the scattering analysis of a circular cylindrical structure, the impedance boundary condition (IBC) can approximate and simplify the perfect electric conductor (PEC) boundary condition. The circular cylinder problem can be solved with modal methods but they require a large number of terms when the cylinder radius is large in terms of the wave length. The uniform theory of diffraction (UTD) [1] is commonly used to overcome this issue. The two-dimensional problem of scattering on a circular cylinder covered by a dielectric layer has been analyzed by [2]–[5], but their solutions either do not consider oblique incidence, fail on the transition region or use a constant surface impedance.
Resumo:
For small or medium size conformal array antennas in terms of the wave length, modal solutions in spectral domain for mutual coupling analysis are convenient for canonical shapes such as circular cylinder [1] or sphere [2], but as the antenna dimensions increase a large number of terms are necessary. For large structures the uniform theory of diffraction (UTD) is commonly used to solve this problem for canonical and arbitrarily convex shaped perfect electric conductor (PEC) surfaces [3]. A UTD solution for mutual coupling on an impedance cylinder has been introduced in [4], [5] but using a constant surface impedance.
Resumo:
This paper presents a reflection suppression technique for far field antenna measurements. The technique is based on a source reconstruction over a surface greater than the antenna itself. To be able to perform the reflection construction the next steps are required: the complete far field antenna pattern is obtained through interpolation of the acquired cuts, the currents are obtained through a holographic technique, the field out of the antenna area is filtered, and the pattern is reconstructed. The algorithm is used with measurements in the LEHA-UPM antenna measurement facilities and in the outdoor far field facility of LIT INPE in Brazil.
Resumo:
This paper describes the new anechoic chamber available at The University of Kent, UK. This facility includes a spherical near/far field, planar near field, cylindrical near field and a compact range. The facility allows measurement from 600 MHz up to 110 MHz. The spherical, planar and cylindrical ranges covers up to 40 GHz and the compact range is available from 50 GHz up to 110 MHz. Immediate plans are to use the new facility to measure body-centric antennas and sensing nodes together with near field sampling of finite sized Frequency Selective Surfaces.
Resumo:
We discuss two different approaches to overcome the power limitations of CW THz generation imposed to conventional photomixers. The increase in power achievable by using arrays of AEs is studied. Then ?large area emitters? are proposed as an alternate approach to overcome the power limitations. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in particularly favorable radiation profiles.
Resumo:
This paper presents the design and characterization process of an active array demonstrator for the mid-frequency range (i.e., 300 MHz-1000 MHz) of the future Square Kilometre Array (SKA) radio telescope. This demonstrator, called FIDA3 (FG-IGN: Fundación General Instituto Geográfico Nacional - Differential Active Antenna Array), is part of the Spanish contribution for the SKA project. The main advantages provided by this design include the use of a dielectric-free structure, and the use of a fully-differential receiver in which differential low-noise amplifiers (LNAs) are directly connected to the balanced tapered-slot antennas (TSAs). First, the radiating structure and the differential low-noise amplifiers were separately designed and measured, obtaining good results (antenna elements with low voltage standing-wave ratios, array scanning capabilities up to 45°, and noise temperatures better than 52 K with low-noise amplifiers at room temperature). The potential problems due to the differential nature of the proposed solution are discussed, so some effective methods to overcome such limitations are proposed. Second, the complete active antenna array receiving system was assembled, and a 1 m2 active antenna array tile was characterized.
Resumo:
This paper describes the accurate characterization of the reflection coefficients of a multilayered reflectarray element by means of artificial neural networks. The procedure has been tested with different RA elements related to actual specifications. Up to 9 parameters were considered and the complete reflection coefficient matrix was accurately obtained, including cross polar reflection coefficients. Results show a good agreement between simulations carried out by the Method of Moments and the ANN model outputs at RA element level, as well as with performances of the complete RA antenna designed.
Resumo:
In this paper a novel dual-band single circular polarization antenna feeding network for satellite communications is presented. The novel antenna feed chain1 is composed of two elements or subsystems, namely a diplexer and a bi-phase polarizer. In comparison with the classic topology based on an orthomode transducer and a dual-band polarizer, the proposed feed chain presents several advantages, such as compactness, modular design of the different components, broadband operation and versatility in the subsystems interconnection. The design procedure of this new antenna feed configuration is explained. Different examples of antenna feeding networks at 20/30 GHz are presented. It is pointed out the excellent results obtained in terms of isolation and axial ratio.
Resumo:
The design of a Ku-band reconfigurable reflectarray antenna for emergency satellite communications is presented. Bidirectional high data rate satellite links are needed in emergency conditions where other telecommunication infrastructures are not available. In order to operate in this type of scenario, an antenna should be deployable, transportable, and easily repointable. The need of an automatic and fast satellite location and pointing system leads to a completely electronic reconfigurable antenna. The operative bandwidth is from 10.7 to 12.5 GHz for reception and from 14 up to 14.5 GHz for transmission (30% of relative bandwidth). The selected antenna architecture is based on a dual reflectarray system comprising a passive subreflectarray and an active main reflectarray made of reconfigurable 1-bit elementary cells based on PIN diodes.
Resumo:
A generalized methodology to design low-profile transmitarray (TA) antennas made of several stacked layers with nonresonant printed phasing elements is presented. A study of the unit cell bandwidth, phase-shift range and tolerances has been conducted considering different numbers of layers. A structure with three metalized layers with capacitive and inductive elements enabling a phase range of nearly 360° and low insertion loss is introduced. A study of the four-layer structure shows improvement in the performance of the unit cells in terms of bandwidth from 2% to more than 20% and a complete phase coverage. Implementations on a flexible substrate of TAs with progressive phase shift operating at 19 GHz are used for validation.
Resumo:
A method to reconstruct the excitation coefficients of wide-slot arrays from near-field data is presented. The plane wave spectrum (PWS) is used for reconstruction, and the shape of the field distribution on a wide slot is considered in the calculation of the PWS. The proposed algorithm is validated through the reconstruction of the excitation coefficients of a wide-slot array with element failures from the simulated nearfield data. The element failures are clearly located by the proposed algorithm
Resumo:
This article proposes a frequency agile antenna whose operating frequency band can be switched. The design is based on a Vivaldi antenna. High-performance radio-frequency microelectromechanical system (RF-MEMS) switches are used to realize the 2.7 GHz and 3.9 GHz band switching. The low band starts from 2.33 GHz and works until 3.02 GHz and the high band ranges from 3.29 GHz up to 4.58 GHz. The average gains of the antenna at the low and high bands are 10.9 and 12.5 dBi, respectively. This high-gain frequency reconfigurable antenna could replace several narrowband antennas for reducing costs and space to support multiple communication systems, while maintaining good performance.