582 resultados para zebra mussels
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O mexilhão-dourado (Limnoperna fortunei) é um bivalve de água doce pertencente à família Mytilidae. Originário de rios e arroios da China e do sudeste asiático, foi introduzido acidentalmente na América do Sul em 1991, no estuário do rio da Prata, provavelmente através de água de lastro. Como encontrou condições propícias para o seu desenvolvimento, se expandiu através dos rios Uruguai, Paraná e Paraguai, sendo atualmente o principal responsável pelo macrofouling em ecossistemas de água doce do continente. O presente estudo compreende uma área de grande extensão na bacia do Rio da Prata, onde foram amostrados pontos estratégicos nos rios Paraná (e seus principais afluentes), Uruguai e Paraguai. A partir de coletas de organismos do plâncton, realizadas por arrasto vertical, foram quantificadas as densidades de larvas de L. fortunei em cada local de amostragem. Assim, obteve-se um panorama atual da ocorrência do mexilhão, registrando-se, inclusive, alguns limites de sua distribuição. As densidades mostraram-se, no geral, elevadas, provavelmente em decorrência do período de amostragem (verão 2010), onde a atividade reprodutiva da espécie é maior devido às altas temperaturas. Porém, grandes variações ao longo da bacia foram registradas, o que pode estar relacionado ao grau de antropização, disponibilidade de substratos, velocidade da corrente, tempo de introdução, entre outras variáveis
Resumo:
Pós-graduação em Ciências Biológicas (Zoologia) - IBB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sao Paulo state (Brazil) has one of the most overpopulated coastal zones in South America, where previous studies have already detected sediment and water contamination. However, biological-based monitoring considering signals of xenobiotic exposure and effects are scarce. The present study employed a battery of biomarkers under field conditions to assess the environmental quality of this coastal zone. For this purpose, the activity of CYP 450, antioxidant enzymes, DNA damage, lipid peroxidation and lysosomal membrane were analysed in caged mussels and integrated using Factorial Analysis. A representation of estimated factor scores was performed in order to confirm the factor descriptions characterizing the studied areas. Biomarker responses indicated signals of mussels` impaired health during the monitoring, which pointed to the impact of different sources of contaminants in the water quality and identified critical areas. This integrated approach produced a rapid, sensitive and cost-effective assessment, which could be incorporated as a descriptor of environmental status in future coastal zones biomonitoring. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A taxonomic survey of the diatom Pseudo-nitzschia H. Peragallo was carried out in the Parana and Santa Catarina coasts, Southern Brazil. Samples were taken in various localities along the coastline using vertical hauls from the bottom to the surface. Electron microscopy revealed five species: the potentially toxic P. australis Frenguelli, P calliantha Lundholm, Moestrup & Has le, P multiseries (Has le) Has le and P pungens (Grunow ex Cleve) Has le (plus P pungens var. cingulata Villac), and the non-toxic P linea Lundholm, Has le & G. A. Fryxell. Southern Brazilian strains of P. calliantha and P multiseries have previously been shown to be toxic, raising concerns about a potential contamination of mussels and oysters being commercially grounded in the region. High morphological variability was observed in valve characters of P calliantha and P pungens, in some cases confirmed in the literature. In P calliantha there was a conspicuous differentiation in two morphotypes separated from each other by the width and the shape of the valve, and the density of the poroids. P linea has not previously been found in Brazilian waters, and P pungens var. cingulata is a new record in Western Atlantic waters. Future investigations using molecular techniques will elucidate whether the genetic variability corresponds to the morphological variation and unveil the possible existence of semicryptic species of Pseudo-nitzschia inhabiting the South Brazilian coast.
Resumo:
Recent progress in scientific research has facilitated accurate genetic and neuropathological diagnosis of congenital myopathies. However, given their relatively low incidence, congenital myopathies remain unfamiliar to the majority of care providers, and the levels of patient care are extremely variable. This consensus statement aims to provide care guidelines for congenital myopathies. The International Standard of Care Committee for Congenital Myopathies worked through frequent e-mail correspondences, periodic conference calls, 2 rounds of online surveys, and a 3-day workshop to achieve a consensus for diagnostic and clinical care recommendations. The committee includes 59 members from 10 medical disciplines. They are organized into 5 working groups: genetics/diagnosis, neurology, pulmonology, gastroenterology/nutrition/speech/oral care, and orthopedics/rehabilitation. In each care area the authors summarize the committee's recommendations for symptom assessments and therapeutic interventions. It is the committee's goal that through these recommendations, patients with congenital myopathies will receive optimal care and improve their disease outcome.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, Sao Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, São Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.
Resumo:
[EN] We examined whether the abundance and size of the starfish Marthasterias glacialis (Lamk.) exhibit a depth-dependent partitioning on subtidal reefs. We tested the hypothesis that differences in food availability can result in habitat partitioning along a depth gradient. The abundance and size of M. glacialis was registered at 4 depth strata: 0-4 m, 4-8 m, 8-12 m, and >12 m; we also recorded the number of food items that they were preying on. The abundance and size of M. glacialis decreased with depth. Mussels (Mytilus galloprivincialis) were the most preyed food item across all depth strata, followed by gastropods, sea urchins and barnacles; M. glacialis also consumed a significantly larger amount of mussels in feeding experiments compared with sea urchins and gastropods. The abundance of M. galloprivincialis beds decreased with depth. The clear link between the decrease in abundance and size of M. glacialis with depth and the decay of the most consumed prey (mussels) suggest that food availability may play an important role in the vertical distribution of this starfish, though wave-associated turbulence in the first few metres of the subtidal could also limit the abundance of M. glacialis.
Resumo:
The research is focused on the relationship between some Mg2+-dependent ATPase activities of plasma- and mitochondrial membranes from tissues of cultured marine bivalve molluscs and potentially stressful environmental conditions, such as the exposure to contaminants both of natural origin (ammonia nitrogen, the main contaminant of aquaculture plants) and of anthropic source (alkyltins). The two filter-feeding bivalve species selected colonize different habitats: the common mussel Mytilus galloprovincialis binds to hard substrates and the Philippine clam Tapes philippinarum burrows into sea bottom sandy beds. The choice of typical species of coastal waters, extremely suitable for environmental studies due to their features of poor motility, resistance to transport and great filtering efficiency, may constitute a model to evaluate responses to contaminants of membrane-bound enzyme activities involved in key biochemical mechanisms, namely cell ionic regulation and mitochondrial energy production. In vitro and in vitro approaches have been pursued. In vitro assays were carried out by adding the contaminants (NH4Cl and alkyltins) directly to the ATPase reaction media. In vivo experiments were carried out by exposing mussels to various tributyl tin (TBT) concentrations under controlled conditions in aquaria. ATPase activities were determined spectrophotometrically according to the principles of the method of Fiske and Subbarow (1925). The main results obtained are detailed below. In Tapes philippinarum the interaction of NH4 +, the main form of ammonia nitrogen at physiological and seawater pHs, with the Na,K-ATPase and the ouabaininsensitive Na-ATPase was investigated in vitro on gill and mantle microsomal membranes. The proven replacement by NH4 +of K+ in the activation of the Na,KATPase and of Na+ in the activation of the ouabain-insensitive ATPase displayed similar enzyme affinity for the substituted cation. on the one hand this finding may represent one of the possible mechanisms of ammonia toxicity and, on the other, it supports the hypothesis that NH4 + can be transported across the plasma membrane through the two ATPases. In this case both microsomal ATPases may be involved and co-operate, at least under peculiar circumstances, to nitrogen excretion and ammonia detoxification mechanisms in bivalve molluscs. The two ATPase activities stimulated by NH4 + maintained their typical response to the glycoside ouabain, specific inhibitor of the Na,K-ATPase, being the Na++ NH4 +-activated ATPase even more susceptive to the inhibitor and the ouabain-insensitive ATPase activity activated indifferently by Na+ or NH4 + unaffected by up to 10-2 M ouabain. In vitro assays were carried out to evaluate the response of the two Na-dependent ATPases to organotins in clams and mussels and to investigate the interaction of TBT with mussel mitochondrial oligomycin-sensitive Mg-ATPase. Since no literature data were available, the optimal assay conditions and oligomycin sensitivity of mussel mitochondrial MgATPase were determined. In T. philippinarum the ouabain-insensitive Na-ATPase was found to be refractory to TBT both in the gills and in the mantle, whereas the Na,K-ATPase was progressively inhibited by increasing TBT doses; the enzyme inhibition was more pronounced in the gills than in the mantle. In both tissues of M. galloprovincialis the Na,K-ATPase inhibition by alkyltins decreased in the order TBT>DBT(dibutyltin)>>MBT(monobutyltin)=TeET(tetraethyltin) (no effect). Mussel Na-ATPase confirmed its refractorimess to TBT and derivatives both in the gills and in the mantle. These results indicate that the Na,K-ATPase inhibition decreases as the number of alkyl chains bound to tin decreases; however a certain polarity of the organotin molecule is required to yield Na,K-ATPase inhibition, since no enzyme inhibition occurred in the presence of tetraalkyl-substituted derivatives such as TeET . Assays carried out in the presence of the dithioerythritol (DTE) pointed out that the sulphhydrylic agent is capable to prevent the Na,K-ATPase inhibition by TBT, thus suggesting that the inhibitor may link to -SH groups of the enzyme complex.. Finally, the different effect of alkyltins on the two Na-dependent ATPases may constitute a further tool to differentiate between the two enzyme activities. These results add to the wealth of literature data describing different responses of the two enzyme activities to endogenous and exogenous modulators . Mussel mitochondrial Mg-ATPase was also found to be in vitro inhibited by TBT both in the gills and in the mantle: the enzyme inhibition followed non competitive kinetics. The failed effect of DTE pointed out that in this case the interaction of TBT with the enzyme complex is probably different from that with the Na,K-ATPase. The results are consistent with literature data showing that alkyltin may interact with enzyme structures with different mechanisms. Mussel exposure to different TBT sublethal doses in aquaria was carried out for 120 hours. Two samplings (after 24 and 120 hrs) were performed in order to evaluate a short-term response of gill and mantle Na,K-ATPase, ouabain-insensitive Na-ATPase and Mg-ATPase activities. The in vivo response to the contaminants of the enzyme activities under study was shown to be partially different from that pointed out in the in vitro assays. Mitochondrial Mg-ATPase activity appeared to be activated in TBTexposed mussels with respect to control ones, thus confirming the complexity of evaluating in vivo responses of the enzyme activities to contaminants, due to possible interactions of toxicants with molluscan metabolism. Concluding, the whole of data point out that microsomal and mitochondrial ATPase activities of bivalve molluscs are generally responsive to environmental contaminants and suggest that in some cases membrane-bound enzyme activities may represent the molecular target of their toxicity. Since the Na,K-ATPase, the Na-ATPase and the Mg-ATPase activities are poorly studied in marine bivalves, this research may contribute to enlarge knowledge in this quite unexplored field.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.