1000 resultados para wave dislocation
Resumo:
By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.
Resumo:
Existing models of baroclinic tides are based upon the "traditional approximation'', i. e., neglect of the horizontal component of the Earth's rotation, leading to a well- known conclusion that no freely propagating internal waves can exist beyond the critical latitude and the wave rays are symmetric to the vertical. However, recent studies have contended that the situation may change if both the vertical and horizontal components of the Earth's rotation are taken into account. With the full account of the Coriolis force, characteristics of the internal wavefield generated by tidal flow over uneven topography are investigated. It is found that "nontraditional effects'' profoundly change not only the dynamics of internal waves but also the rate at which the barotropic tidal energy is fed into the internal wavefield. Discarding the traditional approximation, internal waves are proved to be able to generate poleward of the critical latitude, rays of which are no longer symmetric and the limiting values of ray angles become greater or less than 90 degrees, depending on the local latitude and the direction of ray. More importantly, in contrast to the predictions of models based upon the traditional approximation, a substantial conversion occurs in the situations when stratification is so weak that the buoyancy frequency is below the tidal one.
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
Resumo:
In this paper, a series of experiments have been conducted in a U-shaped oscillatory flow tunnel, which provides a more realistic simulation than the previous actuator loading methods. Based on the experimental data of pipe displacement with two different constraint conditions (freely laid pipelines and anti-rolling pipelines), three characteristic times in the process of pipeline losing stability are identified. The effects of sand size on the pipeline lateral stability are examined for freely laid pipelines. The empirical relationships between non-dimensional pipeline weight (G) and Fronde number (Fr-b) are established for different constraint conditions, which will provide a guide for engineering practice. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The nonlinear amplitude equation, which was derived by Jian Yongjun employing expansion of two-time scales in inviscid fluids in a vertically oscillating circular cylindrical vessel, is modified by introducing a damping term due to the viscous dissipation of this system. Instability of the surface wave is analysed and properties of the solutions of the modified equation are determined together with phase-plane trajectories. A necessary condition of forming a stable surface wave is obtained and unstable regions are illustrated. Research results show that the stable pattern of surface wave will not lose its stability to an infinitesimal disturbance.
Resumo:
The present paper contains a detailed study of shock wave reflection from a wedge placed in various suspensions. In past works, the incident shock propagated initially in pure gas and the suspension started only at the leading edge of the deflecting wedge. However, in the present case the entire flow field is filled with a gas-dust suspension and the initial shock wave has steady-state structure relative to the shock front. In former studies the transmitted shock wave starts its propagation into the suspension and is reflected from the wedge at the same time. It is therefore obvious that the two unrelated processes of (2D) reflection and (1D) "transitional" relaxation occur simultaneously. In the present case the suspension behind the incident shock wave has reached steady state (i.e., it is a traveling wave) before the shock reaches the wedge leading edge. The reflection process from the deflecting wedge is studied for different dust mass loadings and different dust-particle diameter. It is shown that when the dust loading is low and the dust particle diameter is small the wave reflection pattern is similar to that observed in a similar pure gas case. In addition, an equilibrium state is reached, behind the evolved waves, very quickly. On the other hand, when the dust loading is relatively high and/or the dust particle diameter is relatively large, the observed reflection wave pattern is very different from that seen in a similar pure gas case. In such cases it takes much longer time to reach an equilibrium state behind the reflecting waves. It is also shown that the dust presence significantly affects the (gas) pressure on the wedge surface. The higher the dust loading is, the higher the pressure on the wedge surface. Suspensions composed of solid particle of different size, but having the same dust mass loading, will approach the same equilibrium pressure. However, it will take longer time to reach an equilibrium state for suspensions having large diameter particles. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.
Resumo:
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.
Resumo:
In the present paper, we endeavor to accomplish a diagram, which demarcates the validity ranges for interfacial wave theories in a two-layer system, to meet the needs of design in ocean engineering. On the basis of the available solutions of periodic and solitary waves, we propose a guideline as principle to identify the validity regions of the interfacial wave theories in terms of wave period T, wave height H, upper layer thickness d(1), and lower layer thickness d(2), instead of only one parameter-water depth d as in the water surface wave circumstance. The diagram proposed here happens to be Le Mehautes plot for free surface waves if water depth ratio r = d(1)/d(2) approaches to infinity and the upper layer water density rho(1) to zero. On the contrary, the diagram for water surface waves can be used for two-layer interfacial waves if gravity acceleration g in it is replaced by the reduced gravity defined in this study under the condition of sigma = (rho(2) - rho(1))/rho(2) -> 1.0 and r > 1.0. In the end, several figures of the validity ranges for various interfacial wave theories in the two-layer fluid are given and compared with the results for surface waves.
Wave propagation and the frequency domain Green's functions in viscoelastic Biot/squirt (BISQ) media
Resumo:
In this paper, we examine the characteristics of elastic wave propagation in viscoelastic porous media, which contain simultaneously both the Biot-flow and the squirt-flow mechanisms (BISQ). The frequency-domain Green's functions for viscoelastic BISQ media are then derived based on the classic potential function methods. Our numerical results show that S-waves are only affected by viscoelasticity, but not by squirt-flows. However, the phase velocity and attenuation of fast P-waves are seriously influenced by both viscoelasticity and squirt-flows; and there exist two peaks in the attenuation-frequency variations of fast P-waves. In the low-frequency range, the squirt-flow characteristic length, not viscoelasticity, affects the phase velocity of slow P-waves, whereas it is opposite in the high-frequency range. As to the contribution of potential functions of two types of compressional waves to the Green's function, the squirt-flow length has a small effect, and the effects of viscoelastic parameter are mainly in the higher frequency range. Crown Copyright (C) 2006 Published by Elsevier Ltd. All rights reserved.