927 resultados para two-dimensional electrophoresis
Resumo:
Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.
Resumo:
Gas chromatography-mass spectrometry with electron ionization and positive-ion chemical ionization and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF-MS) were applied for the characterization of the chemical composition of complex hydrocarbons in the non-polar neutral fraction of cigarette smoke condensates. Automated data processing by TOF-MS software combined with structured chromatograms and manual review of library hits were used to assign the components from GC x GC-TOF-MS analysis. The distributions of aliphatic hydrocarbons and aromatics were also investigated. Over 100 isoprenoid hydrocarbons were detected, including carotene degradation products, phytadiene isomers and carbocyclic diterpenoids. A total of 1800 hydrocarbons were tentatively identified, including aliphatic hydrocarbons, aromatics, and isoprenoid hydrocarbons. The identified hydrocarbons by GC x GC-TOF-MS were far more than those by GC-MS. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports an analytical method for separating, identifying, and quantifying sulfur-containing compounds in crude oil fraction (IBP-360degreesC) samples based on comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. Various sulfur-containing compounds and their groups were analyzed with one direct injection. 3620 peaks were detected including 1722 thiols/thioethers/ disulfides/1-ring thiophenes, 953 benzothiophenes, 704 dibenzothiophenes, and 241 benzonaphthothiophenes. The target sulfur compounds and their groups were identified based on the group separation feature and structured retention of comprehensive two-dimensional gas chromatography as well as standard substances. The quantitative analysis of major sulfur-containing compounds and total sulfur was based on the linear response of the sulfur chemiluminescence detector using the internal standard method. The sulfur contents of target sulfur compounds and their groups in 4 crude oil fractions were also determined. The recoveries for standard sulfur-containing compounds were in the range of 90-102%. The quantitative result of total sulfur in the Oman crude oil fraction sample was compared with those from ASTM D 4294 standard method (total S by X-ray fluorescence spectrometry), the relative deviation (RD%) was 4.2% and the precision of the method satisfactory.
Resumo:
A comprehensive two-dimensional liquid chromatographic separation system based on the combination of a CN column and an ODS column is developed for the separation of components in a traditional Chinese medicine (TCM) Rhizoma chuanxiong. Two columns are coupled by a two-position, eight-port valve equipped with two storage loops and controlled by a computer. The effluent is detected by both the diode array detector and atmospheric pressure chemical ionization (APCI) mass spectrometer. More than 52 components in the methanol extract of R. chuanxiong were resolved and 11 of them were preliminary identified according to their UV and mass spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This article reports an analytical method for separating, identifying and quantitating sulfur-containing compounds and their groups in diesel oils (170-400degreesC) using comprehensive two-dimensional gas chromatography coupled with a sulfur chemiluminescence detector. The identification of target compounds and their groups was based on standard substances, the group separation feature and the-effect of comprehensive two-dimensional gas chromatography. The quantitative analysis on major sulfur compounds and total sulfur was carried out based on the linear response of sulfur chemiluminescence detector and the internal standards method. The results of total sulfur determination in the samples were compared with those from ASTM D 4294 standard method, the R.S.D. percentage were <6.02%, correctness of this method can meet the industrial requirement. To the end, the method developed was used to investigate the sulfur-containing compounds in different diesel oils, the result shows that the distribution of sulfur-containing compounds in diesel oils from different process units are apparently different. The sulfur compounds in fluid catalytic cracking (FCC), residuum fluid catalytic cracking (RFCC) diesel oils mainly exist in the form of alkyl-substituted dibenzothiophenes that add up to about 40-50% of the total sulfur, while this number is only 6-8 and 20-28% in visbreaking (VB) and delayed-coking (DC) diesel oils, respectively. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
A simple hydrothermal method has been developed to synthesize monodisperse beta-NaLuF4 microplates in a large scale. The microcrystals have a perfect hexagonal shape with a diameter of about 5.2 mu m and a thickness of 300 nm. Trisodium citrate (Cit(3-)), which is introduced into the reaction mixture and acts as the chelating agent and shape modifier, plays a key role in fine-tuning the microstructures. The dominant adsorption of Cit(3-) onto the {0001} facets lowers the surface energy of these facets.
Resumo:
The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.
Resumo:
Two new copper-thiacalix[4]arene compounds, [Cu-2(1)-Cl-2(H(4)TC4A)](CH3OH) (1) and [Cu(I)2Cl(2)(H(4)PTC4A)](CH3OH)(CHCl3)(0.5) (2) (where H(4)TC4A = p-tert-butylthiacalix[4]arene and H(4)PTC4A = p-phenylthiacalix[4]arene), were synthesized by the solvothermal method in the mixed CH3OH/CHCl3 (1: 1) solvent and reassembled in air at room temperature to two other structures, [(Cu4Cl3)-Cl-II(HCO2)(TC4A)(CH3-OH)(2)(H2O)](CHCl3)(CH3OH)(2.7) (3) and [(Cu4Cl4)-Cl-II(PTC4A)(CH3OH)(4)] (4), respectively. All these four compounds were characterized by TG analyses, FTIR spectroscopy, and singlecrystal X-ray diffraction analyses. Compounds 1 and 2 feature two-dimensional layered networks, while compounds 3 and 4 are assembled by some tetranuclear units.
Resumo:
The title compound, [Cu-2(C9H10NO3)(2)(NO3)(2)(C10H8N2)-(H2O)(2)](n), contains Cu-II atoms and L-tyrosinate (L-tyr) and 4,4'-bipyridine (4,4'-bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two L-tyr ligands, one N atom from a 4,4'-bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4'-bipy ligands, forming an undulated chiral two-dimensional sheet. O-H center dot center dot center dot O and N-H center dot center dot center dot O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4'-bipy ligands by considering the ratios of the metal ion and organic components.