920 resultados para tree height growth
Resumo:
The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.
Resumo:
The growth of nonpolar a- plane (1 1 -2 0) orientation of the GaN epilayers were confirmed by high resolution x-ray diffraction studies. An in-plane orientation relationship was found to be 0 0 0 1] GaN parallel to -1 1 0 1] sapphire and -1 1 0 0] GaN parallel to 1 1 -2 0] sapphire. SEM image shows the reasonably smooth surface. The photoluminescence spectrum shows near band emission (NBE) at 3.439 eV. The room temperature I-V characteristics of Au/a-GaN schottky diode performed. The Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/a-GaN schottky diode found to be 0.50 eV and 2.01 respectively.
Resumo:
The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report the morphology-controlled synthesis of aluminium (Al) doped zinc oxide (ZnO) nanosheets on Al alloy (AA-6061) substrate by a low-temperature solution growth method without using any external seed layer and doping process. Doped ZnO nanosheets were obtained at low temperatures of 60-90 degrees C for the growth time of 4 hours. In addition to the synthesis, the effect of growth temperature on the morphological changes of ZnO nanosheets is also reported. As-synthesized nanosheets are characterized by FE-SEM, XRD TEM and XPS for their morphology, crystallinity, microstructure and compositional analysis respectively. The doping of Al in ZnO nanosheets is confirmed with EDXS and XPS. Furthermore, the effect of growth temperature on the morphological changes was studied in the range of 50 to 95 degrees C. It was found that the thickness and height of the nanosheets varied with respect to the growth temperature. The study has given an important insight into the structural morphology with respect to the growth temperature, which in turn enabled us to determine the growth temperature window for the ZnO nanosheets. These Al doped ZnO nanosheets have potential application possibilities in gas sensors, solar cells and energy harvesting devices like nanogenerators.
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
Successive thicker P(3MeTh) layers are analysed by ex situ conventional and imaging ellipsometry. Thin films display a smooth surface, are compact and homogeneous while for a growth charge above 20 mC cm(-2) the polymer structure modifies to a still uniform but less dense layer. A two-layer model is used and a mathematical procedure is developed to obtain, simultaneously, from the experimental ellipsometric parameters, Delta and Psi, the thickness and the complex refractive index of P(3MeTh) films grown up to 80 mC cm(-2). Thicker polymer layers are disordered and present a high degree of surface roughness.
Resumo:
A series of experiments have been conducted on cruciform specimens to investigate fatigue crack growth from circular notches under high levels of biaxial stress. Two stress levels (Δσ1= 380 and 560 MPa) and five stress biaxialities (λ=+1.0, +0.5, 0, −0.5 and −1.0; where λ=σ2/σ1 were adopted in the fatigue tests in type 316 stainless steel having a monotonic yield strength of 243 MPa. The results reveal that fatigue crack growth rates are markedly influenced by both the stress amplitude and the stress biaxiality. A modified model has been developed to describe fatigue crack growth under high levels of biaxial stress.
Resumo:
An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate height="18" />when plotted against the effective stress intensity factor range height="14" /> which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high height="14" /> corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor height="13" />, however, is affected by the ferrite content with height="17" /> reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.
Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the height="18" /> ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the height="18" /> data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.
Resumo:
Waterhyacinth ( Eichhornia crassipes (Mart.) Solms), is a serious problem in the Sacramento/San Joaquin Delta, California. There is little published information on its phenology or seasonal growth in this system. Waterhyacinths were sampled at 2 to 3 week intervals from November, 1995 to July, 1997 and the following measurements were made on individual plants: dry weight, height, number of living leaves, number of dead leaves, and the width of the largest lamina. (PDF has 4 pages.)
Resumo:
The Ipil-ipil (Leucaena leucocephal) leaf analyzed for crude protein (CP), fat, crude fibre (CF), ash content, moisture content and nitrogen free extract (NFE). The CP 23± 0.12 % , fat 8 ± 0.11 %, CF 18 ± 0.15 % , ash 10 ± 0.13 %, moisture 14. ± .16% and NFE 29.± 1.10 % were recorded. A twenty one days experiment was conduced to assess the response of juvenile monosex tilapia with different iso-nitrogenous formulated diets for find out the feasibility study of using ipil-ipil leaf meals as feed ingredient for juvenile tilapia. Three experimental diets were formulated by using fish meal, soybean meal, rice bran and ipil ipil leaf meal. One control diet was formulated by using fish meal, soybean meal and rice bran. Considering the high demand, limited availability of fish meal and soybean meal, ipil ipil leaf meal was incorporated in juvenile tilapia feed. Among plant protein ingredients ipil ipil leaf meal was considered as the most nutritive plant protein source after soybean meal. However, high concentration of toxic element limited the incorporation level of ipil ipil leaf meal in fish feed. Use of 15 % ipil ipil leaf meal in fish feed was more significant from the view of growth performance and economics. The higher Absolute Growth was 1119.26 gm, higher Specific Growth Rate was 6.52% /day higher Feed Conversion Efficiency was 41.23% , higher Protein Efficiency Ratio was 1.178 and higher Average Daily Growth rate was 14.00% recorded in diet-4 ( which contained 15% IILM). The lower Feed Conversion Ratio 2.42 and lower cost for per unit production 34.65 taka/kg were recorded in diet-4. The higher cost for per unit fish production 45.6 tk./kg was recorded for diet-1 where no ipil ipil leaf meal.. The results suggest that tree legumes Ipil-ipil (Leucaena leucocephal) leaf has potential and excellent source of feed ingredients as protein supplements for juvenile monosex
Resumo:
Sapphire crystals, 140 mm in diameter and 90 turn in height, have been grown by temperature gradient techniques (TGT). The growth direction of the boule was fixed by means of Lane X-ray diffraction. A prominent 204 nm absorption band in TGT-Al2O3. which does not appear in single crystals grown by Czochralski method has been studied. Analysis further substantiates the F-center model of this band. Two relatively weaker bands absorbing at 232 nm and 254 nm were ascribed to F+ centers. F-type centers concentration was determined using Smakula's equation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In (2 + 1) dimension, growth process of thin film on non-planar substrate in Kuramoto-Sivashinsky model is studied with numerical simulation approach. 15 x 15 semi-ellipsoids arranged orderly on the surface of substrate are used to represent initial rough surface. The results show that at the initial stage of growth process, the surface morphology of thin film appears to be grid-structure, and the interface width constantly decreases with the growth time, then reaches minimum. However, the grid-structure becomes ambiguous, and granules of different sizes distribute evenly on the surface of thin film with the increase of growth time. Thereafter, the average size of granules and the interface width gradually increase, and the surface morphology of thin film presents fractal properties. The numerical results of height-height correlation functions of thin film verify the surface morphology of thin film to be fractal for a longer growth time. By fitting of the height-height correlation functions of thin film with different growth times, the growth process is described quantitatively. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Ring-width indices from 136 sites in the area from northern Montana to southern New Mexico between latitudes 103°W and 111°W were examined to infer periods of anomalous wetness for the years 1700-1964. Sites were grouped into north, central and south regions, and the gross regional tree-ring fluctuations were compared. The results indicate that the period 1905-1917 was unique in the 265-year record for the combined magnitude, duration, and north/south coherence of the growth anomaly of much lesser magnitude occurred in the 1830's-1840's [sic]. Both this and the 1905-1917 anomaly appear from time-series plots to be manifestations of low-frequency growth variations at wave lengths between about 20 and 60 years.
Resumo:
Extreme low growth events in giant sequoia ring-width index series coincide with severe droughts in the San Joaquin drainage, on whose eastern flank the sequoia groves stand. Comparison with a network of 102 largely moisture-sensitive tree-ring chronologies from western North America suggests that this relationship has been stable for at least 380 years. The twentieth century is not unusual in the frequency of these events. We expect the growth record will soon be replicated for over 2000 years at two locations.