649 resultados para transporters
Resumo:
Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. In this study, classical intrinsic and acquired as well as new resistance mechanisms relevant in the cellular response to the novel vacuolar H+-ATPase inhibitor archazolid B were investigated. Archazolid B, originally produced by the myxobacterium Archangium gephyra, displayed cytotoxicity in the low nanomolar range on a panel of cancer cell lines. The drug showed enhanced cytotoxic activity against nearly all cancerous cells compared to their non-cancerous pendants. With regards to ABC transporters, archazolid B was identified as a moderate substrate of ABCB1 (P-glycoprotein) and a weak substrate of ABCG2 (BCRP), whereas hypersensitivity was observed in ABCB5-expressing cells. The cytotoxic effect of archazolid B was shown to be independent of the cellular p53 status. However, cells expressing constitutively active EGFR displayed significantly increased resistance. Acquired drug resistance was studied by establishing an archazolid B-resistant MCF-7 cell line. Experiments showed that this secondary resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolid B. Instead, a slight increase of ABCB1 and a significant overexpression of EGFR as well as reduced proliferation may contribute to acquired archazolid B resistance. For identification of new resistance strategies upon archazolid B treatment, omics data from bladder cancer and glioblastoma cells were analyzed, revealing drastic disturbances in cholesterol homeostasis, affecting cholesterol biosynthesis, uptake and transport. As shown by filipin staining, archazolid B led to accumulation of free cholesterol in lysosomes, which triggered sterol responses, mediated by SREBP-2 and LXR, including up-regulation of HMGCR, the key enzyme of cholesterol biosynthesis. Furthermore, inhibition of LDL uptake as well as impaired LDLR surface expression were observed, indicating newly synthesized cholesterol to be the main source of cholesterol in archazolid B-treated cells. This was proven by the fact that under archazolid B treatment, total free cholesterol levels as well as cell survival were significantly reduced by inhibiting HMGCR with fluvastatin. The combination of archazolid B with statins may therefore be an attractive strategy to circumvent cholesterol-mediated cell survival and in turn potentiate the promising anticancer effects of archazolid B.
Resumo:
Escherichia coli kann unter aeroben und anaeroben Bedingungen mit C4-Dicarboxylaten wachsen, die Regulation des Stoffwechsels erfolgt durch das Zwei-Komponenten-System DcuSR. Die C4-Dicarboxylattransporter DctA (aerob) bzw. DcuB (anaerob) agieren als Co-Regulatoren und bilden gemeinsam mit der Sensor-Histidinkinase DcuS einen Sensorkomplex, in dem DcuS den Sensor darstellt und DctA bzw. DcuB diesen in seine rezeptive Form überführen. DcuS ist membranständig und verknüpft die Bindung von C4-Dicarboxylaten im Periplasma mit der Autophosphorylierung seiner Kinasedomäne im Cytoplasma. Dies stellt den Beginn einer Signalkaskade vom extrazellulären Reiz zum cytoplasmatischen Responseregulator DcuR dar.rnIn dieser Arbeit wurde die intramolekulare Signaltransduktion in DcuS und über die Membran untersucht. Der Fokus lag auf der Funktion der beiden Transmembranhelices TM1 und TM2 und der cytoplasmatischen PAS-Domäne, die die sensorische PASp- mit der effektorischen Kinasedomäne verbinden. Konformationsänderungen dieser Signalweiterleitung wurden durch Cysteinzugänglichkeitsstudien, oxidatives Cystein-Crosslinking und Mutageneseexperimente analysiert. rnTM2 wurde als der Überträger eines transmembranen Signals identifiziert, während TM1 als Membrananker fungiert. Der aktive Signalzustand von TM2 wird unabhängig von der Art der DcuS-Aktivierung (Effektorbindung, Deletion des Co-Regulators DctA oder PASc-ON-Mutationen) eingenommen. Der Signaltransduktion liegt eine Verschiebung von TM2 entlang ihrer Längsachse (Kolbenhub) in Richtung Periplasma zu Grunde. Cystein-Crosslinking offenbarte eine durchgehende Helix aus PASp-α6 und TM2, die im Dimer parallel mit ihrem Pendant verschoben wird. Die Amplitude des Kolbenhubs wurde anhand von Zugänglichkeitsveränderungen, der Lage verankernder Tryptophanreste, Strukturvergleichen und energetischen Berechnungen auf max. 4 - 6 Å festgelegt. Sie ist von der Effektorstärke abhängig und koppelt so die metabolische Bevorzugung einzelner Substrate an das Ausmaß des Kolbenhubs und der Genexpression. Für die cytoplasmatische PAS-Domäne wurde ein Zusammenhang zwischen lokaler Dimerisierung und Kontrolle der Sensorfunktion nachgewiesen. Schwächung der Dimerisierung führt zu einer Aktivierung der Sensorkinase. Es wurde eine hydrophobe Region identifiziert, deren strukturelle Integrität für diese Dimerisierung essentiell ist. Mit N248 wurde ein funktionell bedeutender Rest beschrieben, der auf Grund seiner Lage und seiner Eigenschaft mehrere Sekundärstrukturelemente zu verknüpfen, als Scharnier innerhalb der Domäne an der Umsetzung des Kolbenhubs in eine veränderte Quartärstruktur von PASc beteiligt sein könnte.
Resumo:
Der Fokus dieser Arbeit lag in der Synthese von funktionellen HPMA-Copolymeren, sowohl für die Darstellung definierter Polymer-Antikörper Konjugate, als auch zum effizienten Transport von p-DNA in Polymer-DNA Komplexen (Polyplexe). Nach ausführlicher physikalischer und chemischer Charakterisierung wurden gezielt ihre Wechselwirkungen mit (Immun)-Zellen untersucht und so ihr Potential für die Verwendung in der Tumor-Immuntherapie aufgezeigt.rnFür das gezielte Ansprechen von bestimmten Immunzellen mit Schlüsselfunktionen besitzen monoklonale Antikörper ein großes Potential. Im Rahmen dieser Arbeit gelang die Darstellung definierter Polymer-Antikörper Konjugate über das gezielte Einführen von Thiol-Gruppen an Antikörper und die Synthese eng verteilter, Maleinimid funktionalisierter HPMA-Copolymere. Diese sehr gut definierten, funktionellen HPMA-Copolymere konnten über die Kombination der RAFT-Polymerisation und Reaktivester Polymeren gewonnen werden. Unterschiedliche Polymerstrukturen ermöglichten die Synthese verschiedener Arten von Polymer-Antikörper Konjugaten. Speziell die Untersuchung der verschiedenen Konjugate aus dem für dendritische Zellen spezifischen aDEC-205 Antikörper an Immunzellen aus dem Knochenmark von Mäusen lieferten wertvolle Erkenntnisse über Struktur-Wirkungsbeziehungen und zeigten die Möglichkeit der gezielten Adressierung von Immunzellen mit Schlüsselfunktionen bei der Aktivierung einer (Tumor)-Immunabwehr am Beispiel von dendritischen Zellen. Gleichzeitig erlaubt der Syntheseweg sowohl die gleichzeitige und kontrollierte Einführung auch komplexerer Stimuli am Polymerrückgrat als auch die Verwendung verschiedener Antikörper.rnÜber die Kombination der RAFT-Polymerisation und polymeren Reaktivestern wurde ebenso die Synthese von neuartigen kationisch-hydrophilen Polylysin-b-poly(HPMA) Blockcopolymeren als effiziente Transporter für den komplexen aber wirkungsvollen Wirkstoff p-DNA in Form von Polymer-DNA Komplexen (Polyplexe) realisiert. Da diese Polyplexe gleichzeitig eine Abschirmung der sensitiven p-DNA über eine poly(HPMA)-Korona vermitteln, stellen sie allgemein ein geeignetes Transportmittel für einen therapeutischen Transport von p-DNA dar. Diese Polyplexe sind in der Lage, humane Nierenkarzinomzellen (HEK-293T Zelllinie) zu transfizieren ohne signifikante Zytotoxizität zu zeigen. Darüber hinaus gelang eine große Steigerung der Transfektionseffizienz, ohne eine gleichzeitige Erhöhung der Zytotoxizität, durch die gezielte Einführung von Redox-stimuliresponsiven Disulfid-Gruppen zwischen den einzelnen Blöcken. Diese Polyplexe stellen einen polymeren Vektor zur transkriptionellen Regulierung von Zellen dar, zum Beispiel für die transkriptionelle Aktivierung von dendritischen Zellen, durch die Verwendung speziell dafür modifizierter p-DNA-Konstrukte. rnDurch die Verknüpfung einer ortsspezifischen enzymatischen Kopplung und kupferfreien Cyclooctin-Azid Kupplung gelang die kontrollierte und kovalente Modifizierung von polymeren Mizellen mit aDEC-205 Antikörpern an der hydrophilen poly(HPMA)-Korona. Diese Methode bietet die Möglichkeit der Anbindung der effektiven aber anspruchsvollen Erkennungsstruktur Antikörper an komplexere Polymerstrukturen und andere nano-partikulären Systeme, zum Beispiel an die zuvor genannten Polyplexe, um eine zellspezifische und verbesserte Aufnahme und Prozessierung zu erreichen.rnDiese Studien zeigen somit, sowohl die Möglichkeit der selektiven Addressierung von Immunzellen mit Schlüsselfunktionen wie dendritischer Zellen, als auch die Möglichkeit der transkriptionellen Regulation von Zellen durch Polyplexe. Sie stellen somit einen ersten Schritt zur Herstellung funktioneller, nanopartikulärer Systeme zur Verwendung in der Tumor-Immuntherapie dar. rn
Resumo:
The morphological and functional unit of all the living organisms is the cell. The transmembrane proteins, localized in the plasma membrane of cells, play a key role in the survival of the cells themselves. These proteins perform a variety of different tasks, for example the control of the homeostasis. In order to control the homeostasis, these proteins have to regulate the concentration of chemical elements, like ions, inside and outside the cell. These regulations are fundamental for the survival of the cell and to understand them we need to understand how transmembrane proteins work. Two of the most important categories of transmembrane proteins are ion channels and transporter proteins. The ion channels have been depth studied at the single molecule level since late 1970s with the development of patch-clamp technique. It is not possible to apply this technique to study the transporter proteins so a new technique is under development in order to investigate the behavior of transporter proteins at the single molecule level. This thesis describes the development of a nanoscale single liposome assay for functional studies of transporter proteins based on quantitative fluorescence microscopy in a highly-parallel manner and in real time. The transporter of interest is the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique will allow the characterization of LMCA1 functionality at the single molecule level. Three systematically characterized fluorescent sensors were tested at the single liposome scale in order to investigate if their properties are suitable to study the function of the transporter of interest. Further studies will be needed in order to characterize the selected calcium sensor and pH sensor both implemented together in single liposomes and in presence of the reconstituted protein LMCA1.
Resumo:
Large inter-individual variability in drug response and toxicity, as well as in drug concentrations after application of the same dosage, can be of genetic, physiological, pathophysiological, or environmental origin. Absorption, distribution and metabolism of a drug and interactions with its target often are determined by genetic differences. Pharmacokinetic and pharmacodynamic variations can appear at the level of drug metabolizing enzymes (e.g., the cytochrome P450 system), drug transporters, drug targets or other biomarker genes. Pharmacogenetics or toxicogenetics can therefore be relevant in forensic toxicology. This review presents relevant aspects together with some examples from daily routines.
Resumo:
Response to analgesics, anticancer pharmacotherapy and pharmacotherapy of other cancer related symptoms vary broadly between individuals. Age, disease, comorbidities, concomitant medication, organ function and patients' compliance may partly explain the differences. However, the focus of ongoing research has shifted towards genomic variants of phase I and II drug metabolizing enzymes with one important goal being an individual dose adjustment according to a patient's genotype. Polymorphisms of the cytochrome P 450 2D6 influence the metabolism of many drugs including the analgesics codeine, tramadol, hydrocodone and oxycodone, as well as the metabolism of tricyclic antidepressants and the anticancer drug tamoxifen. Other candidate genes such as (opioid)-receptors, transporters and other molecules important for pharmacotherapy in pain management are discussed. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, study results are often equivocal and limited by small sample sizes and often by their retrospective design. Well designed studies are needed to demonstrate superiority of pharmoacogenetics to conventional dosing regimes.
Resumo:
Genomic variations influencing response to pharmacotherapy of pain are currently under investigation. Drug-metabolizing enzymes represent a major target of ongoing research in order to identify associations between an individual's drug response and genetic profile. Polymorphisms of the cytochrome P450 enzymes (CYP2D6) influence metabolism of codeine, tramadol, hydrocodone, oxycodone and tricyclic antidepressants. Blood concentrations of some NSAIDs depend on CYP2C9 and/or CYP2C8 activity. Genomic variants of these genes associate well with NSAIDs' side effect profile. Other candidate genes, such as those encoding (opioid) receptors, transporters and other molecules important for pharmacotherapy in pain management, are discussed; however, study results are often equivocal. Besides genetic variants, further variables, for example, age, disease, comorbidity, concomitant medication, organ function as well as patients' compliance, may have an impact on pharmacotherapy and need to be addressed when pain therapists prescribe medication. Although pharmacogenetics as a diagnostic tool has the potential to improve patient therapy, well-designed studies are needed to demonstrate superiority to conventional dosing regimes.
Resumo:
The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 play an important role in cellular cholesterol homeostasis, but their function in mammary gland (MG) tissue remains elusive. A bovine MG model that allows repeated MG sampling in identical animals at different functional stages was used to test whether 1) ABCA1 and ABCG1 protein expression and subcellular localization in mammary epithelial cells (MEC) change during the pregnancy-lactation cycle, and 2) these 2 proteins were present in milk fat globules (MFG). Expression and localization in MEC were investigated in bovine MG tissues at the end of lactation, during the dry period (DP), and early lactation using immunohistochemical and immunofluorescence approaches. The presence of ABCA1 and ABCG1 in MFG isolated from fresh milk was determined by immunofluorescence. The ABCA1 protein expression in MEC, expressed as arbitrary units, was higher during the end of lactation (12.2±0.24) and the DP (12.5±0.22) as compared with during early lactation (10.2±0.65). In contrast, no significant change in ABCG1 expression existed between the stages. Throughout the cycle, ABCA1 and ABCG1 were detected in the apical (41.9±24.8 and 49.0±4.96% of cows, respectively), basal (56.2±28.1 and 54.6±7.78% of cows, respectively), or entire cytoplasm (56.8±13.4 and 61.6±14.4% of cows, respectively) of MEC, or showed combined localization. Unlike ABCG1, ABCA1 was absent at the apical aspect of MEC during early lactation. Immunolabeling experiments revealed the presence of ABCA1 and ABCG1 in MFG membranes. Findings suggest a differential, functional stage-dependent role of ABCA1 and ABCG1 in cholesterol homeostasis of the MG epithelium. The presence of ABCA1 and ABCG1 in MFG membranes suggests that these proteins are involved in cholesterol exchange between MEC and alveolar milk.
Resumo:
Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.
Resumo:
High-resolution microscopy techniques provide a plethora of information on biological structures from the cellular level down to the molecular level. In this review, we present the unique capabilities of transmission electron and atomic force microscopy to assess the structure, oligomeric state, function and dynamics of channel and transport proteins in their native environment, the lipid bilayer. Most importantly, membrane proteins can be visualized in the frozen-hydrated state and in buffer solution by cryo-transmission electron and atomic force microscopy, respectively. We also illustrate the potential of the scintillation proximity assay to study substrate binding of detergent-solubilized transporters prior to crystallization and structural characterization.
Resumo:
Renal excretion of citrate, an inhibitor of calcium stone formation, is controlled mainly by reabsorption via the apical Na(+)-dicarboxylate cotransporter NaDC1 (SLC13A2) in the proximal tubule. Recently, it has been shown that the protein phosphatase calcineurin inhibitors cyclosporin A (CsA) and FK-506 induce hypocitraturia, a risk factor for nephrolithiasis in kidney transplant patients, but apparently through urine acidification. This suggests that these agents up-regulate NaDC1 activity. Using the Xenopus lævis oocyte and HEK293 cell expression systems, we examined first the effect of both anti-calcineurins on NaDC1 activity and expression. While FK-506 had no effect, CsA reduced NaDC1-mediated citrate transport by lowering heterologous carrier expression (as well as endogenous carrier expression in HEK293 cells), indicating that calcineurin is not involved. Given that CsA also binds specifically to cyclophilins, we determined next whether such proteins could account for the observed changes by examining the effect of selected cyclophilin wild types and mutants on NaDC1 activity and cyclophilin-specific siRNA. Interestingly, our data show that the cyclophilin isoform B is likely responsible for down-regulation of carrier expression by CsA and that it does so via its chaperone activity on NaDC1 (by direct interaction) rather than its rotamase activity. We have thus identified for the first time a regulatory partner for NaDC1, and have gained novel mechanistic insight into the effect of CsA on renal citrate transport and kidney stone disease, as well as into the regulation of membrane transporters in general.
Resumo:
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Resumo:
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Resumo:
The scintillation proximity assay (SPA) is a rapid radioligand binding assay. Upon binding of radioactively labeled ligands (here L-[(3)H]arginine or D-[(3)H]glucose) to acceptor proteins immobilized on fluoromicrospheres (containing the scintillant), a light signal is stimulated and measured. The application of SPA to purified, detergent-solubilized membrane transport proteins allows substrate-binding properties to be assessed (e.g., substrate specificity and affinity), usually within 1 d. Notably, the SPA makes it possible to study specific transporters without interference from other cellular components, such as endogenous transporters. Reconstitution of the target transporter into proteoliposomes is not required. The SPA procedure allows high sample throughput and simple sample handling without the need for washing or separation steps: components are mixed in one well and the signal is measured directly after incubation. Therefore, the SPA is an excellent tool for high-throughput screening experiments, e.g., to search for substrates and inhibitors, and it has also recently become an attractive tool for drug discovery.
Resumo:
In the last decade, pegylated interferon-α (PegIFN-α) plus ribavirin (RBV) was the standard treatment of chronic hepatitis C for genotype 1, and it remains the standard for genotypes 2 and 3. Recent studies reported associations between RBV-induced anemia and genetic polymorphisms of concentrative nucleoside transporters such as CNT3 (encoded by SLC28A3) and inosine triphosphatase (encoded by ITPA). We aimed at studying genetic determinants of RBV kinetics, efficacy and treatment-associated anemia.