936 resultados para transforming growth factor beta receptor 3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases are believed to arise from dysregulation of biological systems (pathways) perturbed by environmental triggers. Biological systems as a whole are not just the sum of their components, rather ever-changing, complex and dynamic systems over time in response to internal and external perturbation. In the past, biologists have mainly focused on studying either functions of isolated genes or steady-states of small biological pathways. However, it is systems dynamics that play an essential role in giving rise to cellular function/dysfunction which cause diseases, such as growth, differentiation, division and apoptosis. Biological phenomena of the entire organism are not only determined by steady-state characteristics of the biological systems, but also by intrinsic dynamic properties of biological systems, including stability, transient-response, and controllability, which determine how the systems maintain their functions and performance under a broad range of random internal and external perturbations. As a proof of principle, we examine signal transduction pathways and genetic regulatory pathways as biological systems. We employ widely used state-space equations in systems science to model biological systems, and use expectation-maximization (EM) algorithms and Kalman filter to estimate the parameters in the models. We apply the developed state-space models to human fibroblasts obtained from the autoimmune fibrosing disease, scleroderma, and then perform dynamic analysis of partial TGF-beta pathway in both normal and scleroderma fibroblasts stimulated by silica. We find that TGF-beta pathway under perturbation of silica shows significant differences in dynamic properties between normal and scleroderma fibroblasts. Our findings may open a new avenue in exploring the functions of cells and mechanism operative in disease development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Autografts are considered to support bone regeneration. Paracrine factors released from cortical bone might contribute to the overall process of graft consolidation. The aim of this study was to characterize the paracrine factors by means of proteomic analysis. MATERIALS AND METHODS Bone-conditioned medium (BCM) was prepared from fresh bone chips of porcine mandibles and subjected to proteomic analysis. Proteins were categorized and clustered using the bioinformatic tools UNIPROT and PANTHER, respectively. RESULTS Proteomic analysis showed that BCM contains more than 150 proteins, of which 43 were categorized into "secreted" and "extracellular matrix." Growth factors that are not only detectable in BCM, but potentially also target cellular processes involved in bone regeneration, eg, pleiotrophin, galectin-1, transforming growth factor beta (TGF-β)-induced gene (TGFBI), lactotransferrin, insulin-like growth factor (IGF)-binding protein 5, latency-associated peptide forming a complex with TGF-β1, and TGF-β2, were discovered. CONCLUSION The present results demonstrate that cortical bone chips release a large spectrum of proteins with the possibility of modulating cellular aspects of bone regeneration. The data provide the basis for future studies to understand how these paracrine factors may contribute to the complex process of graft consolidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Treating low back pain (LBP) has become an increasing challenge, as it is one of the main factors causing pain and is accompanied by high costs for the individual and the society. LBP can be caused by trauma of the intervertebral disc (IVD) or IVD degeneration. In the case of disc herniation the inner gelatinous part of the IVD, called nucleus pulposus, is pressed through the fibrous, annulus fibrosus that forms the outer part of the IVD. Today’s gold standard for treatment is extensive surgery as removal of the IVD and fusion of the vertebrae. In order to find a more gentle way to treat LBP and restore the native IVD we use a novel silk fleece-membrane composite from genetically modified silk worms whose silk contains a growth factor (GDF-6) that is associated with pushing stem cells towards a disc like phenotype (1). By combining it with a genipin-enhanced fibrin hydrogel we tested its suitability in organ culture on prior injured bovine IVD in our custom built two-degree of freedom bioreactor to mimic natural loading conditions. Material & Methods: Bovine IVDs of 12-17 months old animals were isolated by first removing all surrounding tissue followed by cutting out the IVDs as previously described (2). Culturing of discs occurred in high glucose Dulbecco's Modified Eagle Medium (HG-DMEM) supplemented with 5% serum as previously described (2). On the next day injury was induced using a 2mm biopsy punch (Polymed, Switzerland). The formed cavity was filled with (0.4%) genipin-enhanced human based fibrin hydrogel (35-55mg/mL human fibrinogen, Baxter, Austria) and sealed with a silk fleece-membrane composite (Spintec Engineering, Germany). Different culture conditions were applied: free swelling, static diurnal load of 0.2MPa for 8h/d and complex loading at 0.2MPa compression combined with ± 2° torsion at 0.2Hz for 8h/d (2). After 14 days of culture cell activity was determined with resazurin assay. Additionally, glycosaminoglycan (dimethyl-methylene blue), DNA (Hoechst) and collagen content (hydroxy- proline) were determined. Finally, real-time qPCR of major IVD marker and inflammation genes was performed to judge integrity of IVDs. Results: The fibrin hydrogel is able to keep the silk seal in place throughout the 14 days of in organ culture under all conditions. Additionally, cell activity showed optimistic results and we could not confirm negative effects of the repaired discs regarding overexpression of inflammation markers. Conclusions: The genipin-enhanced fibrin hydrogel in combination with the silk fleece- membrane composite seems to be a promising approach for IVD repair. Currently we assess the capability of GDF-6 incorporated in our silk composites on human mesenchymal stem cells and later on in organ culture. References 1. Clarke LE, McConnell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA. Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition and micromechanical properties of nucleus pulposus constructs. Arthritis Res Ther 2014, Mar 12;16(2):R67. 2. Chan SC, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp 2012, Feb 2;60(60):e3490. Acknowledgements. This work is funded by the Gebert Rüf Foundation, project number GRS-028/13.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pattern of expression of the pro$\alpha$2(I) collagen gene is highly tissue-specific in adult mice and shows its strongest expression in bones, tendons, and skin. Transgenic mice were generated harboring promoter fragments of the mouse pro$\alpha$2(I) collagen gene linked to the Escherichia coli $\beta$-galactosidase or firefly luciferase genes to examine the activity of these promoters during development. A region of the mouse pro$\alpha$2(I) collagen promoter between $-$2000 and +54 exhibited a pattern of $\beta$-galactosidase activity during embryonic development that corresponded to the expression pattern of the endogenous pro$\alpha$2(I) collagen gene as determined by in situ hybridization. A similar pattern of activity was also observed with much smaller promoter fragments containing either 500 or 350 bp of upstream sequence relative to the start of transcription. Embryonic regions expressing high levels of $\beta$-galactosidase activity included the valves of the developing heart, sclerotomes, meninges, limb buds, connective tissue fascia between muscle fibers, osteoblasts, tendon, periosteum, dermis, and peritoneal membranes. The pattern of $\beta$-galactosidase activity was similar to the extracellular immunohistochemical localization of transforming growth factor-$\beta$1 (TGF-$\beta$1). The $-$315 to $-$284 region of the pro$\alpha$2(I) collagen promoter was previously shown to mediate the stimulatory effects of TGF-$\beta$1 on the pro$\alpha$2(I) collagen promoter in DNA transfection experiments with cultured fibroblasts. A construct containing this sequence tandemly repeated 5$\sp\prime$ to both a very short $\alpha$2(I) collagen promoter ($-$40 to +54) and a heterologous minimal promoter showed preferential activity in tail and skin of 4-week old transgenic mice. The pattern of expression mimics that of the $-$350 to +54 pro$\alpha$2(I) collagen promoter linked to a luciferase reporter gene in transgenic mice. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During male gonadal development Müllerian duct regression is mediated by the actions of the hormone Müllerian inhibiting substance (MIS), a member of the transforming growth factor beta superfamily. MIS is considered to be unique among members of this superfamily because bioactivation of MIS via proteolytic processing is hypothesized to occur at its target organ, the Müllerian duct. We find instead that the majority of MIS is processed and secreted from the embryonic testes as a complex in which the mature region remains noncovalently associated with the prodomain. In addition, we have identified two candidate endoproteases that are expressed in the testes and that may be capable of processing MIS in vivo. These kex2/subtilisin-like enzymes, PC5 and furin, are members of the proprotein convertase family that have been implicated in hormone bioactivation via proteolytic processing after dibasic amino acid cleavage recognition sites. Coexpression of PC5 and MIS in transfected mammalian cells results in efficient processing and bioactivation of MIS. Our results suggest that MIS is a natural substrate for PC5, thereby supporting a role for prohormone convertases in the activation of transforming growth factor beta-related hormones during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoiesis gives rise to blood cells of different lineages throughout normal life. Abnormalities in this developmental program lead to blood cell diseases including leukemia. The establishment of a cell culture system for the clonal development of hematopoietic cells made it possible to discover proteins that regulate cell viability, multiplication and differentiation of different hematopoietic cell lineages, and the molecular basis of normal and abnormal blood cell development. These regulators include cytokines now called colony-stimulating factors (CSFs) and interleukins (ILs). There is a network of cytokine interactions, which has positive regulators such as CSFs and ILs and negative regulators such as transforming growth factor beta and tumor necrosis factor (TNF). This multigene cytokine network provides flexibility depending on which part of the network is activated and allows amplification of response to a particular stimulus. Malignancy can be suppressed in certain types of leukemic cells by inducing differentiation with cytokines that regulate normal hematopoiesis or with other compounds that use alternative differentiation pathways. This created the basis for the clinical use of differentiation therapy. The suppression of malignancy by inducing differentiation can bypass genetic abnormalities that give rise to malignancy. Different CSFs and ILs suppress programmed cell death (apoptosis) and induce cell multiplication and differentiation, and these processes of development are separately regulated. The same cytokines suppress apoptosis in normal and leukemic cells, including apoptosis induced by irradiation and cytotoxic cancer chemotherapeutic compounds. An excess of cytokines can increase leukemic cell resistance to cytotoxic therapy. The tumor suppressor gene wild-type p53 induces apoptosis that can also be suppressed by cytokines. The oncogene mutant p53 suppresses apoptosis. Hematopoietic cytokines such as granulocyte CSF are now used clinically to correct defects in hematopoiesis, including repair of chemotherapy-associated suppression of normal hematopoiesis in cancer patients, stimulation of normal granulocyte development in patients with infantile congenital agranulocytosis, and increase of hematopoietic precursors for blood cell transplantation. Treatments that decrease the level of apoptosis-suppressing cytokines and downregulate expression of mutant p53 and other apoptosis suppressing genes in cancer cells could improve cytotoxic cancer therapy. The basic studies on hematopoiesis and leukemia have thus provided new approaches to therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown beneficial effects of dietary protein restriction on transforming growth factor beta (TGF-beta) expression and glomerular matrix accumulation in experimental glomerulonephritis. We hypothesized that these effects result from restriction of dietary L-arginine intake. Arginine is a precursor for three pathways, the products of which are involved in tissue injury and repair: nitric oxide, an effector molecule in inflammatory and immunological tissue injury; polyamines, which are required for DNA synthesis and cell growth; and proline, which is required for collagen production. Rats were fed six isocaloric diets differing in L-arginine and/or total protein content, starting immediately after induction of glomerulonephritis by injection of an antibody reactive to glomerular mesangial cells. Mesangial cell lysis and monocyte/macrophage infiltration did not differ with diet. However, restriction of dietary L-arginine intake, even when total protein intake was normal, resulted in decreased proteinuria, decreased expression of TGF-beta 1 mRNA and TGF-beta 1 protein, and decreased production and deposition of matrix components. L-Arginine, but not D-arginine, supplementation to low protein diets reversed these effects. These results implicate arginine as a key component in the beneficial effects of low protein diet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements The authors would like to thank Dr Marius Sudol for the hYAP plasmids (obtained through Addgene), Dr Pete Zammit for the pMSCV-IRES-eGFP plasmid, Dr Robert Judson for subcloning the hYAP cDNAs into the pMSCV-IRES-eGFP plasmid, Dr Lynda Erskine for the provision of mouse embryo samples, and Professor Jimmy Hutchison and the Orthopaedics Department at the Aberdeen Royal Infirmary for the provision of human tissue samples. The authors are also grateful to Denise Tosh and Susan Clark for excellent technical support. This work was funded by Arthritis Research UK (grant 19429).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vertebrate body is made by progressive addition of new tissue from progenitors at the posterior embryonic end. Axial extension involves different mechanisms that produce internal organs in the trunk but not in the tail. We show that Gdf11 signaling is a major coordinator of the trunk-to-tail transition. Without Gdf11 signaling, the switch from trunk to tail is significantly delayed, and its premature activation brings the hindlimbs and cloaca next to the forelimbs, leaving extremely short trunks. Gdf11 activity includes activation of Isl1 to promote formation of the hindlimbs and cloaca-associated mesoderm as the most posterior derivatives of lateral mesoderm progenitors. Gdf11 also coordinates reallocation of bipotent neuromesodermal progenitors from the anterior primitive streak to the tail bud, in part by reducing the retinoic acid available to the progenitors. Our findings provide a perspective to understand the evolution of the vertebrate body plan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mitogen-activated protein ( MAP) kinases contribute to altered cell growth and function in a variety of disease states. However, their role in the endothelial complications of diabetes mellitus remains unclear. Human endothelial cells were exposed for 72 h to 5 mM ( control) or 25 mM ( high) glucose or 5 mM glucose plus 20 mM mannitol ( osmotic control). The roles of p38 and p42/44 MAP kinases in the high glucose-induced growth effects were determined by assessment of phosphorylated MAP kinases and their downstream activators by Western blot and by pharmacological inhibition of these MAP kinases. Results were expressed as a percentage ( means +/- SE) of control. High glucose increased the activity of total and phosphorylated p38 MAP kinase ( P < 0.001) and p42/44 MAP kinase ( P < 0.001). Coexposure of p38 MAP kinase blocker with high glucose reversed the antiproliferative but not the hypertrophic effects associated with high-glucose conditions. Transforming growth factor (TGF)-beta1 increased the levels of phosphorylated p38 MAP kinase, and p38 MAP kinase blockade reversed the antiproliferative effects of this cytokine. The high glucose-induced increase in phosphorylated p38 MAP kinase was reversed in the presence of TGF-beta1 neutralizing antibody. Although hyperosmolarity also induced antiproliferation (P < 0.0001) and cell hypertrophy (P < 0.05), there was no change in p38 activity, and therefore inhibition of p38 MAP kinase had no influence on these growth responses. Blockade of p42/44 MAP kinase had no effect on the changes in endothelial cell growth induced by either high glucose or hyperosmolarity. High glucose increased p42/44 and p38 MAP kinase activity in human endothelial cells, but only p38 MAP kinase mediated the antiproliferative growth response through the effects of autocrine TGF-beta1. High glucose-induced endothelial cell hypertrophy was independent of activation of the MAP kinases studied. In addition, these effects were independent of any increase in osmolarity associated with high-glucose exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data Suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postprandial hyperglycemia is implicated as a risk factor predisposing to vascular complications. This study was designed to assess recurrent short-term increases in glucose on markers of renal fibrogenesis. Human renal cortical fibroblasts were exposed to fluctuating short-term (2 h) increases to 15 mM D-glucose, three times a day over 72 h, on a background of 5 mM D-glucose. To determine whether observed changes were due to fluctuating osmolality, identical experiments were undertaken with cells exposed to L-glucose. Parallel experiments were performed in cells exposed to 5 mM D-glucose and constant exposure to either 15 or 7.5 mM D-glucose. Fluctuating D-glucose increased extracellular matrix, as measured by proline incorporation ( P < 0.05), collagen IV ( P < 0.005), and fibronectin production ( P < 0.001), in association with increased tissue inhibitor of matrix metalloproteinase (MMP) ( P < 0.05). Sustained exposure to 15 mM D-glucose increased fibronectin ( P < 0.001), in association with increased MMP-2 ( P = 0.01) and MMP-9 activity ( P < 0.05), suggestive of a protective effect on collagen matrix accumulation. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA was increased after short-term (90 min) exposure to 15 mM glucose (P < 0.05) and after 24-h exposure to 7.5 mM ? ( P < 0.05). Normalization of TGF-beta(1) secretion occurred within 48 h of constant exposure to an elevated glucose. Fluctuating L-glucose also induced TGF-beta(1) mRNA and a profibrotic profile, however, to a lesser extent than observed with exposure to fluctuating D-glucose. The results suggest that exposure to fluctuating glucose concentrations increases renal interstitial fibrosis compared with stable elevations in D-glucose. The effects are, in part, due to the inherent osmotic changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta 1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.