929 resultados para transdermal patch
Resumo:
Using a substituted cysteine accessibility scan, we have investigated the structures that form the internal pore of the acid-sensing ion channel 1a. We have identified the amino acid residues Ala-22, Ile-33, and Phe-34 in the amino terminus and Arg-43 in the first transmembrane helix, which when mutated into cysteine, were modified by intracellular application of MTSET, resulting in channel inhibition. The inhibition of the R43C mutant by internal MTSET requires opening of the channel. In addition, binding of Cd2+ ions to R43C slows the channel inactivation. This indicates that the first transmembrane helix undergoes conformational changes during channel inactivation. The effect of Cd2+ on R43C can be obtained with Cd2+ applied at either the extracellular or the intracellular side, indicating that R43C is located in the channel pore. The block of the A22C, I33C, and F34C mutants by MTSET suggests that these residues in the amino terminus of the channel also participate to the internal pore.
Resumo:
AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.
Resumo:
En els darrers anys, els sistemes de telemetria per a aplicacions mèdiques han crescut significativament en el diagnòstic i en la monitorització de, per exemple, la glucosa, la pressió de la sang, la temperatura, el ritme cardíac... Els dispositius implantats amplien les aplicacions en medicina i incorpora una millora de qualitat de vida per a l’usuari. Per aquest motiu, en aquest projecte s’estudien dues de les antenes més comuns, com son l’antena dipol i el patch, aquesta última és especialment utilitzada en aplicacions implantades. En l’anàlisi d’aquestes antenes s’han parametritzat característiques relacionades amb l’entorn de l’aplicació, així com també de la pròpia antena, explicant el comportament que, a diferencia amb l’espai lliure, les antenes presenten a canvis d’aquests paràmetres. Al mateix temps, s’ha implementat una configuració per a la mesura d’antenes implantades basat en el model del cos humà d’una capa. Comparant amb els resultats de les simulacions realitzades mitjançant el software FEKO, s’ha obtingut gran correspondència en la mesura empírica d’adaptació i de guany de les antenes microstrip. Gràcies a l’anàlisi paramètric, aquest projecte també presenta diversos dissenys de les antenes optimitzant el guany realitzable amb l’objectiu d’aconseguir la millor comunicació possible amb el dispositiu extern o estació base.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Structural concrete is one of the most commonly used construction materials in the United States. However, due to changes in design specifications, aging, vehicle impact, etc. – there is a need for new procedures for repairing concrete (reinforced or pretressed) superstructures and substructures. Thus, the overall objective of this investigation was to develop innovative cost effective repair methods for various concrete elements. In consultation with the project advisory committee, it was decided to evaluate the following three repair methods: • Carbon fiber reinforced polymers (CFRPs) for use in repairing damaged prestressed concrete bridges • Fiber reinforced polymers (FRPs) for preventing chloride penetration of bridge columns • Various patch materials The initial results of these evaluations are presented in this three volume final report. Each evaluation is briefly described in the following paragraphs. A more detailed abstract of each evaluation accompanies the volume on that particular investigation.
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
BACKGROUND: Minimally invasive surgery (MIS) for late-presenting congenital diaphragmatic hernia (CDH) has been described previously, but few neonatal cases of CDH have been reported. This study aimed to report the multicenter experience of these rare cases and to compare the laparoscopic and thoracoscopic approaches. METHODS: Using MIS procedures, 30 patients (16 boys and 14 girls) from nine centers underwent surgery for CDH within the first month of life, 26 before day 5. Only one patient had associated malformations. There were 10 preterm patients (32-36 weeks of gestational age). Their weight at birth ranged from 1,800 to 3,800 g, with three patients weighing less than 2,600 g. Of the 30 patients, 18 were intubated at birth. RESULTS: The MIS procedures were performed in 18 cases by a thoracoscopic approach and in 12 cases by a laparoscopic approach. No severe complication was observed. For 20 patients, reduction of the intrathoracic contents was achieved easily with 15 thoracoscopies and 5 laparoscopies. In six cases, the reduction was difficult, proving to be impossible for the four remaining patients: one treated with thoracoscopy and three with laparoscopy. The reasons for the inability to reduce the thoracic contents were difficulty of liver mobilization (1 left CDH and 2 right CDH) and the presence of a dilated stomach in the thorax. Reductions were easier for cases of wide diaphragmatic defects using thoracoscopy. There were 10 conversions (5 laparoscopies and 5 thoracoscopies). The reported reasons for conversion were inability to reduce (n = 4), need for a patch (n = 5), lack of adequate vision (n = 4), narrow working space (n = 1), associated bowel malrotation (n = 1), and an anesthetic problem (n = 1). Five defects were too large for direct closure and had to be closed with a patch. Four required conversion, with one performed through video-assisted thoracic surgery. The recurrences were detected after two primer thoracoscopic closures, one of which was managed by successful reoperation using thoracoscopy. CONCLUSIONS: In the neonatal period, CDH can be safely closed using MIS procedures. The overall success rate in this study was 67%. The indication for MIS is not related to weeks of gestational age, to weight at birth (if >2,600 g), or to the extent of the immediate neonatal care. Patients with no associated anomaly who are hemodynamically stabilized can benefit from MIS procedures. Reduction of the herniated organs is easier using thoracoscopy. Right CDH, liver lobe herniation, and the need for a patch closure are the most frequent reasons for conversion.
Resumo:
· Evaluate conventional methods of slab removal and asphalt surface preparation for subsequent overlays of portland cement concrete (PCC) in the “remove and replace” areas. · Evaluate existing asphaltic concrete surface under the “remove and patch” areas of rehabilitation areas and evaluate joint formation in the areas of patching. · Evaluate polypropylene fiber enhanced concrete at the three-inch depth to determine the cost/benefit of its inclusion. · Evaluate the performance of the rehabilitated ultra-thin whitetopping sections and the extended performance of the existing ultra-thin sections with and without patching. · Validate existing ultra-thin whitetopping design procedures of the Portland Cement Association (PCA) and American Concrete Pavement Association (ACPA) for application in Iowa.
Resumo:
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.
Resumo:
Central amygdala (CeA) projections to hypothalamic and brain stem nuclei regulate the behavioral and physiological expression of fear, but it is unknown whether these different aspects of the fear response can be separately regulated by the CeA. We combined fluorescent retrograde tracing of CeA projections to nuclei that modulate fear-related freezing or cardiovascular responses with in vitro electrophysiological recordings and with in vivo monitoring of related behavioral and physiological parameters. CeA projections emerged from separate neuronal populations with different electrophysiological characteristics and different response properties to oxytocin. In vivo, oxytocin decreased freezing responses in fear-conditioned rats without affecting the cardiovascular response. Thus, neuropeptidergic signaling can modulate the CeA outputs through separate neuronal circuits and thereby individually steer the various aspects of the fear response.
Resumo:
Thiazolidinediones are agonists of peroxisome proliferator-activated receptor gamma (PPARgamma) that can induce fluid retention and weight gain through unclear mechanisms. To test a proposed role for the epithelial sodium channel ENaC in thiazolidinedione-induced fluid retention, we used mice with conditionally inactivated alphaENaC in the collecting duct (Scnn1a(loxloxCre) mice). In control mice, rosiglitazone did not alter plasma aldosterone levels or protein expression of ENaC subunits in the kidney, but did increase body weight, plasma volume, and the fluid content of abdominal fat pads, and decreased hematocrit. Scnn1a(loxloxCre) mice provided functional evidence for blunted Na+ uptake in the collecting duct, but still exhibited rosiglitazone-induced fluid retention. Moreover, treatment with rosiglitazone or pioglitazone did not significantly alter the open probability or number of ENaC channels per patch in isolated, split-open cortical collecting ducts of wild-type mice. Finally, patch-clamp studies in primary mouse inner medullary collecting duct cells did not detect ENaC activity but did detect a nonselective cation channel upregulated by pioglitazone. These data argue against a primary and critical role of ENaC in thiazolidinedione-induced fluid retention.
Resumo:
Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.
Resumo:
Invasion of the laryngeal framework by thyroid carcinoma requires specific surgical techniques and carries a higher rate of complications that deserve to be highlighted. We reviewed our data from 1995 to 2012 and found six patients with laryngotracheal invasion by thyroid carcinoma. All underwent total thyroidectomy and single-stage cricotracheal resection, plus anterolateral neck dissection. Three had airway obstruction that necessitated prior endoscopic debulking. None of the patients needed a tracheotomy. There were four cases of papillary carcinoma, and two cases of undifferentiated carcinoma. One patient died of complications of the procedure (anastomotic dehiscence and tracheo-innominate artery fistula). Another died 2 months after the procedure from local recurrence and aspiration pneumonia. One case presented recurrence at 15 months, which was managed by re-excision and adjuvant radiotherapy; after 26 months of follow-up, he has no evidence of locoregional recurrence. The three other patients are alive without evidence of disease at 6, 18 and 41 months, respectively. Cricotracheal resection for subglottic invasion by thyroid carcinoma is an effective procedure, but carries significant risks of complications. This could be attributed to the devascularisation of the tracheal wall due to the simultaneous neck dissection, sacrifice of the strap muscles or of a patch of oesophageal muscle layer. We advocate a sternocleidomastoid flap to cover the anastomosis. Cricotracheal resection for subglottic invasion can be curative with good functional outcomes, even for the advanced stages of thyroid cancer. Endoscopic debulking of the airway prior to the procedure avoids tracheotomy.