992 resultados para thermal radiation
Resumo:
The consumption of natural products has become a public health problem, since these medicinal teas are prepared using natural plants without an effective hygienic and sanitary control. The aim of this study was to assess the effects of gamma radiation, on the microbial burden of two medicinal plants: Melissa officinalis and Lippia citriodora. Dried samples of the two plants were irradiated at a Co-60 experimental equipment. The applied gamma radiation doses were 1, 3, and 5 kGy at a dose rate of 1.34 kGy/h. Non-irradiated samples followed all the experiments. Bacterial and fungal counts were assessed before and after irradiation by membrane filtration method. Challenging tests with Escherichia coli were performed in order to evaluate the disinfection efficiency of gamma radiation treatment. Characterization of M. officinalis and L. citriadora microbiota indicated an average bioburden value of 102CFU/g. The inactivation studies of the bacterial mesophilic population of both dried plants pointed out to a one log reduction of microbial load after irradiation at 5 kGy. Regarding the fungal population, the initial load of 30 CFU/g was only reduced by 0.5 log by an irradiation dose of 5 kGy. The dynamics with radiation doses of plants microbial population’s phenotypes indicated the prevalence of gram-positive rods for M. officinalis before and after irradiation, and the increase of the frequency of gram-negative rods with irradiation for L. citriadora. Among fungal population of both plants, Mucor, Neoscytalidium, Aspergillus and Alternaria were the most isolated genera. The results obtained in the challenging tests with E. coli on plants pointed out to an inactivation efficiency of 99.5% and 99.9% to a dose of 2 kGy, for M.officinalis and L. citriadora, respectively. The gamma radiation treatment can be a significant tool for the microbial control in medicinal plants.
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
Present study develops and implements a specific methodology for the assessment of health risks derived from occupational exposure of workers to ionizing radiation in the fertilizer manufacturing industry. Negative effects on the health of exposed workers are identified, according to the types and levels of exposure to which they are subject, namely an increase of the risk of cancer even with long term exposure to low level radiation. Ionizing radiation types, methods and measuring equipment are characterized. The methodology developed in a case study of a phosphate fertilizer industry is applied, assessing occupational exposure to ionizing radiation caused by external radiation and the inhalation of radioactive gases and dust.
Resumo:
In this work is discussed the importance of the renewable production forecast in an island environment. A probabilistic forecast based on kernel density estimators is proposed. The aggregation of these forecasts, allows the determination of thermal generation amount needed to schedule and operating a power grid of an island with high penetration of renewable generation. A case study based on electric system of S. Miguel Island is presented. The results show that the forecast techniques are an imperative tool help the grid management.
Resumo:
Patients scheduled for a magnetic resonance imaging (MRI) scan sometimes require screening for ferromagnetic Intra Orbital Foreign Bodies (IOFBs). To assess this, they are required to fill out a screening protocol questionnaire before their scan. If it is established that a patient is at high risk, radiographic imaging is necessary. This review examines literature to evaluate which imaging modality should be used to screen for IOFBs, considering that the eye is highly sensitive to ionising radiation and any dose should be minimised. Method: Several websites and books were searched for information, these were as follows: PubMed, Science Direct, Web of Knowledge and Google Scholar. The terms searched related to IOFB, Ionising radiation, Magnetic Resonance Imaging Safety, Image Quality, Effective Dose, Orbits and X-ray. Thirty five articles were found, several were rejected due to age or irrelevance; twenty eight were eventually accepted. Results: There are several imaging techniques that can be used. Some articles investigated the use of ultrasound for investigation of ferromagnetic IOFBs of the eye and others discussed using Computed Tomography (CT) and X-ray. Some gaps in the literature were identified, mainly that there are no articles which discuss the lowest effective dose while having adequate image quality for orbital imaging. Conclusion: X-ray is the best method to identify IOFBs. The only problem is that there is no research which highlights exposure factors that maintain sufficient image quality for viewing IOFBs and keep the effective dose to the eye As Low As Reasonably Achievable (ALARA).
Resumo:
We report on a simple method to obtain surface gratings using a Michelson interferometer and femtosecond laser radiation. In the optical setup used, two parallel laser beams are generated using a beam splitter and then focused using the same focusing lens. An interference pattern is created in the focal plane of the focusing lens, which can be used to pattern the surface of materials. The main advantage of this method is that the optical paths difference of the interfering beams is independent of the distance between the beams. As a result, the fringes period can be varied without a need for major realignment of the optical system and the time coincidence between the interfering beams can be easily monitored. The potential of the method was demonstrated by patterning surface gratings with different periods on titanium surfaces in air.
Resumo:
To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 232 – 235, Seattle, EUA
Resumo:
Second International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications (AMICSA 2008), Sintra, Portugal, Setembro de 2008
Resumo:
Coal contains trace quantities of natural radionuclides such as Th-232, U-235, U-238, as well as their radioactive decay products and 40K. These radionuclides can be released as fly ash in atmospheric emissions from coal-fired power plants, dispersed into the environment and deposited on the surrounding top soils. Therefore, the natural radiation background level is enhanced and consequently increase the total dose for the nearby population. A radiation monitoring programme was used to assess the external dose contribution to the natural radiation background, potentially resulting from the dispersion of coal ash in past atmospheric emissions. Radiation measurements were carried out by gamma spectrometry in the vicinity of a Portuguese coal-fired power plant. The radiation monitoring was achieved both on and off site, being the boundary delimited by a 20 km circle centered in the stacks of the coal plant. The measured radionuclides concentrations for the uranium and thorium series ranged from 7.7 to 41.3 Bq/kg for Ra-226 and from 4.7 to 71.6 Bq/kg for Th-232, while K-40 concentrations ranged from 62.3 to 795.1 Bq/kg. The highest values were registered near the power plant and at distances between 6 and 20 km from the stacks, mainly in the prevailing wind direction. The absorbed dose rates were calculated for each sampling location: 13.97-84.00 ηGy/h, while measurements from previous studies carried out in 1993 registered values in the range of 16.6-77.6 ηGy/h. The highest values were registered at locations in the prevailing wind direction (NW-SE). This study has been primarily done to assess the radiation dose rates and exposure to the nearby population in the surroundings of a coal-fired power plant. The results suggest an enhancement or at least an influence in the background radiation due to the coal plant past activities.
Resumo:
Naturally occurring radioactive materials (NORM) under certain conditions can reach hazardous radiological levels contributing to an additional exposure dose to ionizing radiation. Most environmental concerns are associated with uranium mining and milling sites, but the same concerns should be addressed to natural near surface occurrences of uranium as well as man-made sources such as technologically enhanced naturally occurring radioactive materials (TENORM) resulting from phosphates industry, ceramic industry and energy production activities, in particular from coal-fired power plants which is one of the major sources of increased exposure to man from enhanced naturally occurring materials. This work describes the methodology developed to assess the environmental radiation by in situ gamma spectrometry in the vicinity of a Portuguese coal fired power plant. The current investigation is part of a research project that is undergoing in the vicinity of Sines Coal-Fired Power Plant (south of Portugal) until the end of 2013.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
A civilização contemporânea, pelas suas características, é muito exigente em tudo o que diz respeito ao conforto dos edifícios, para trabalho ou habitação, e à necessidade de economizar e racionalizar o uso de energia. A térmica dos edifícios assume, por isso, uma importância acrescida na atividade profissional e no ensino. Para se conduzir ao aperfeiçoamento de soluções na envolvente dos edifícios a este nível, o trabalho aqui realizado centrou-se no estudo do funcionamento da termografia de infravermelhos e da importância da sua utilização na inspeção térmica de edifícios. Descoberta no início do século XIX e desenvolvendo os primeiros sistemas operativos desde a 1ª Guerra Mundial, a fim de determinar heterogeneidades de temperatura superficial, esta técnica não destrutiva permite identificar anomalias que não são visualizadas a olho nu. Com a análise dessas variações de temperatura é possível conhecer os problemas e a localização de irregularidades. Este trabalho baseia-se substancialmente no estudo de edifícios. A análise realizada teve como finalidade executar inspeções termográficas – visuais, com duas abordagens. Por um lado, avaliar salas pertencentes a estabelecimentos de ensino secundário, reabilitadas e não reabilitadas, todas construídas entre as décadas de 60 e 90, com o intuito de diagnosticar patologias construtivas, recorrendo à termografia. Por outro, a análise de edifícios de habitação, com a intenção de avaliar a necessidade de um equipamento complementar às inspeções termográficas – o sistema de porta ventiladora. As inspeções foram regidas pelas diretrizes da norma europeia EN 13187. A termografia é uma técnica importante na realização de ensaios in situ que requerem rapidez de execução, aliada à vantagem de disponibilizar resultados em tempo real, permitindo assim uma primeira análise das leituras no local. A inspeção termográfica complementada com o sistema de porta ventiladora permitiu, também, revelar a importância da necessidade de meios auxiliares em certos casos. A conjugação destas diferentes técnicas permite reduzir a subjetividade da análise in situ e aumentar a fiabilidade do diagnóstico.