869 resultados para teaching law to non-lawyers
Resumo:
This edited collection provides ideas and support for ways of 'bringing poetry alive' in the classroom at Key Stages 1,2 and 3, drawing on what is known to work and also exploring fresh thinking. It is designed to help both new and experienced teachers approach poetry teaching with greater imagination and confidence. The book is edited and introduced by Michael Lockwood and features chapters by experts who have taught poetry in different settings for many years, including contributions from poets Michael Rosen and James Carter. Professor Morag Styles of Cambridge University has provided a Preface. All the contributors have a connection with the University of Reading as lecturers, external examiners, current or former graduate students. The book includes the following sections: Introduction: Developments in Poetry Teaching 1: Reflections on Being Children’s Laureate – Michael Rosen 2: Teaching Poetry in the Early Years - Margaret Perkins 3: Actual Poems, Possible Responses - Prue Goodwin 4: Making Poetry - Catriona Nicholson 5: The role of the poet in primary schools -James Carter 6: Cross-Curricular Poetry Writing - Eileen Hyder 7: Teaching Poetry to Teenagers - Lionel Warner 8: Watching the Words: Drama and Poems - Andy Kempe 9: Literary Reading - Andy Goodwyn The book is intended for teacher educators,teachers and trainee teachers working with children aged 5 to 14 years.
Resumo:
We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.
Resumo:
This paper applies a reading of the postmodernisation of law to the incremental reform of agricultural holdings legislation over the last century. In charting the shifting legal basis of agricultural tenancies, from ‘black letter’ positivism to the cultural contextuality of sumptuary law, the paper theorises that the underlying political imperative has been allied to the changing significance of property ownership and use. Rather than reflecting the long-term official desire to maintain the let sector in British agriculture, however, the paper argues that this process has had other aims. In particular, it has been about an annexation of law to legitimise the retention of landowner power while presenting a rhetorical ‘democratisation’ of farming, away from its plutocratic associations and towards a new narrative of ‘depersonalised’ business.
Resumo:
BACKGROUND: Prebiotics are food ingredients, usually non-digestible oligosaccharides, that are selectively fermented by populations of beneficial gut bacteria. Endoxylanases, altering the naturally present cereal arabinoxylans, are commonly used in the bread industry to improve dough and bread characteristics. Recently, an in situ method has been developed to produce arabinoxylan-oligosaccharides (AXOS) at high levels in breads through the use of a thermophilic endoxylanase. AXOS have demonstrated potentially prebiotic properties in that they have been observed to lead to beneficial shifts in the microbiota in vitro and in murine, poultry and human studies. METHODS: A double-blind, placebo controlled human intervention study was undertaken with 40 healthy adult volunteers to assess the impact of consumption of breads with in situ produced AXOS (containing 2.2 g AXOS) compared to non-endoxylanase treated breads. Volatile fatty acid concentrations in faeces were assessed and fluorescence in situ hybridisation was used to assess changes in gut microbial groups. Secretory immunoglobulin A (sIgA) levels in saliva were also measured. RESULTS: Consumption of AXOS-enriched breads led to increased faecal butyrate and a trend for reduced iso-valerate and fatty acids associated with protein fermentation. Faecal levels of bifidobacteria increased following initial control breads and remained elevated throughout the study. Lactobacilli levels were elevated following both placebo and AXOS-breads. No changes in salivary secretory IgA levels were observed during the study. Furthermore, no adverse effects on gastrointestinal symptoms were reported during AXOS-bread intake. CONCLUSIONS: AXOS-breads led to a potentially beneficial shift in fermentation end products and are well tolerated.
Resumo:
The construction field is dynamic and dominated by complex, ill-defined problems for which myriad possible solutions exist. Teaching students to solve construction-related problems requires an understanding of the nature of these complex problems as well as the implementation of effective instructional strategies to address them. Traditional approaches to teaching construction planning and management have long been criticized for presenting students primarily with well-defined problems - an approach inconsistent with the challenges encountered in the industry. However, growing evidence suggests that employing innovative teaching approaches, such as interactive simulation games, offers more active, hands-on and problem-based learning opportunities for students to synthesize and test acquired knowledge more closely aligned with real-life construction scenarios. Simulation games have demonstrated educational value in increasing student problem solving skills and motivation through critical attributes such as interaction and feedback-supported active learning. Nevertheless, broad acceptance of simulation games in construction engineering education remains limited. While recognizing benefits, research focused on the role of simulation games in educational settings lacks a unified approach to developing, implementing and evaluating these games. To address this gap, this paper provides an overview of the challenges associated with evaluating the effectiveness of simulation games in construction education that still impede their wide adoption. An overview of the current status, as well as the results from recently implemented Virtual Construction Simulator (VCS) game at Penn State provide lessons learned, and are intended to guide future efforts in developing interactive simulation games to reach their full potential.
Resumo:
The orographic gravity wave drag produced in flow over an axisymmetric mountain when both vertical wind shear and non-hydrostatic effects are important was calculated using a semi-analytical two-layer linear model, including unidirectional or directional constant wind shear in a layer near the surface, above which the wind is constant. The drag behaviour is determined by partial wave reflection at the shear discontinuity, wave absorption at critical levels (both of which exist in hydrostatic flow), and total wave reflection at levels where the waves become evanescent (an intrinsically non-hydrostatic effect), which produces resonant trapped lee wave modes. As a result of constructive or destructive wave interference, the drag oscillates with the thickness of the constant-shear layer and the Richardson number within it (Ri), generally decreasing at low Ri and when the flow is strongly non-hydrostatic. Critical level absorption, which increases with the angle spanned by the wind velocity in the constant-shear layer, shields the surface from reflected waves, keeping the drag closer to its hydrostatic limit. While, for the parameter range considered here, the drag seldom exceeds this limit, a substantial drag fraction may be produced by trapped lee waves, particularly when the flow is strongly non-hydrostatic, the lower layer is thick and Ri is relatively high. In directionally sheared flows with Ri = O(1), the drag may be misaligned with the surface wind in a direction opposite to the shear, a behaviour which is totally due to non-trapped waves. The trapped lee wave drag, whose reaction force on the atmosphere is felt at low levels, may therefore have a distinctly different direction from the drag associated with vertically propagating waves, which acts on the atmosphere at higher levels.
Resumo:
A procedure is presented for fitting incoherent scatter radar data from non-thermal F-region ionospheric plasma, using theoretical spectra previously predicted. It is found that values of the shape distortion factor D∗, associated with deviations of the ion velocity distribution from a Maxwellian distribution, and ion temperatures can be deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20°. The procedure can be used with one or both of two sets of assumptions. These concern the validity of the adopted model for the line-of-sight ion velocity distribution in the one case or for the full three-dimensional ion velocity distribution function in the other. The distribution function employed was developed to describe the line-of-sight velocity distribution for large aspect angles, but both experimental data and Monte Carlo simulations indicate that the form of the field-perpendicular distribution can also describe the distribution at more general aspect angles. The assumption of this form for the line-of-sight velocity distribution at a general aspect angle enables rigorous derivation of values of the one-dimensional, line-of-sight ion temperature. With some additional assumptions (principally that the field-parallel distribution is always Maxwellian and there is a simple relationship between the ion temperature anisotropy and the distortion of the field-perpendicular distribution from a Maxwellian), fits to data for large aspect angles enable determination of line-of-sight temperatures at all aspect angles and hence, of the average ion temperature and the ion temperature anisotropy. For small aspect angles, the analysis is restricted to the determination of the line-of-sight ion temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution function and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.
Resumo:
Incoherent scatter data from non-thermal F-region ionospheric plasma are analysed, using theoretical spectra predicted by Raman et al. It is found that values of the semi-empirical drift parameter D∗, associated with deviations of the ion velocity distribution from a Maxwellian, and the plasma temperatures can be rigorously deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20 degrees. For small aspect angles, the deduced value of the average (or 3-D) ion temperature remains ambiguous and the analysis is restricted to the determination of the line-of-sight temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution, and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.
Resumo:
Oil palm empty fruit bunches (OPEFB) fibre, a by-product generated from non-woody, tropical perennial oil palm crop was evaluated for xylooligosaccharides (XOS) production. Samples of OPEFB fibre were subjected to non-isothermal autohydrolysis treatment using a temperature range from 150 to 220 °C. The highest XOS concentration, 17.6 g/L which relayed from solubilisation of 63 g/100 g xylan was achieved at 210 °C and there was a minimum amount of xylose and furfural being produced. The chromatographic purification which was undertaken to purify the oligosaccharide-rich liquor resulted in a product with 74–78% purity, of which 83–85% was XOS with degree of polymerisation (DP) between 5 and 40.
Resumo:
Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of anti-tumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to non-specific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an anti-tumour mAb (the anti-hCD 20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods and yield, molecular substitution ratio, retention of TLR7 activity and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150 : rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method, and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional crosslinker was firstly reacted with rituximab, and secondly to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells whilst no non-specific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.
Resumo:
Pasture-based ruminant production systems are common in certain areas of the world, but energy evaluation in grazing cattle is performed with equations developed, in their majority, with sheep or cattle fed total mixed rations. The aim of the current study was to develop predictions of metabolisable energy (ME) concentrations in fresh-cut grass offered to non-pregnant non-lactating cows at maintenance energy level, which may be more suitable for grazing cattle. Data were collected from three digestibility trials performed over consecutive grazing seasons. In order to cover a range of commercial conditions and data availability in pasture-based systems, thirty-eight equations for the prediction of energy concentrations and ratios were developed. An internal validation was performed for all equations and also for existing predictions of grass ME. Prediction error for ME using nutrient digestibility was lowest when gross energy (GE) or organic matter digestibilities were used as sole predictors, while the addition of grass nutrient contents reduced the difference between predicted and actual values, and explained more variation. Addition of N, GE and diethyl ether extract (EE) contents improved accuracy when digestible organic matter in DM was the primary predictor. When digestible energy was the primary explanatory variable, prediction error was relatively low, but addition of water-soluble carbohydrates, EE and acid-detergent fibre contents of grass decreased prediction error. Equations developed in the current study showed lower prediction errors when compared with those of existing equations, and may thus allow for an improved prediction of ME in practice, which is critical for the sustainability of pasture-based systems.
Resumo:
This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together defined a SLCP mitigation (MIT) scenario. Compared to CLE, the MIT scenario would reduce global methane (CH4) and black carbon (BC) emissions by about 50 and 80 %, respectively. For CH4, measures on shale gas production, waste management and coal mines were most important. For non-CH4 SLCPs, elimination of high-emitting vehicles and wick lamps, as well as reducing emissions from gas flaring, coal and biomass stoves, agricultural waste, solvents and diesel engines were most important. These measures lead to large reductions in calculated surface concentrations of ozone and particulate matter. We estimate that in the EU, the loss of statistical life expectancy due to air pollution was 7.5 months in 2010, which will be reduced to 5.2 months by 2030 in the CLE scenario. The MIT scenario would reduce this value by another 0.9 to 4.3 months. Substantially larger reductions due to the mitigation are found for China (1.8 months) and India (11–12 months). The climate metrics cannot fully quantify the climate response. Therefore, a second research path was taken. Transient climate ensemble simulations with the four ESMs were run for the CLE and MIT scenarios, to determine the climate impacts of the mitigation. In these simulations, the CLE scenario resulted in a surface temperature increase of 0.70 ± 0.14 K between the years 2006 and 2050. For the decade 2041–2050, the warming was reduced by 0.22 ± 0.07 K in the MIT scenario, and this result was in almost exact agreement with the response calculated based on the emission metrics (reduced warming of 0.22 ± 0.09 K). The metrics calculations suggest that non-CH4 SLCPs contribute ~ 22 % to this response and CH4 78 %. This could not be fully confirmed by the transient simulations, which attributed about 90 % of the temperature response to CH4 reductions. Attribution of the observed temperature response to non-CH4 SLCP emission reductions and BC specifically is hampered in the transient simulations by small forcing and co-emitted species of the emission basket chosen. Nevertheless, an important conclusion is that our mitigation basket as a whole would lead to clear benefits for both air quality and climate. The climate response from BC reductions in our study is smaller than reported previously, possibly because our study is one of the first to use fully coupled climate models, where unforced variability and sea ice responses cause relatively strong temperature fluctuations that may counteract (and, thus, mask) the impacts of small emission reductions. The temperature responses to the mitigation were generally stronger over the continents than over the oceans, and with a warming reduction of 0.44 K (0.39–0.49) K the largest over the Arctic. Our calculations suggest particularly beneficial climate responses in southern Europe, where surface warming was reduced by about 0.3 K and precipitation rates were increased by about 15 (6–21) mm yr−1 (more than 4 % of total precipitation) from spring to autumn. Thus, the mitigation could help to alleviate expected future drought and water shortages in the Mediterranean area. We also report other important results of the ECLIPSE project.
Resumo:
Using data on 5509 foreign subsidiaries established in 50 regions of 8 EU countries over the period 1991–1999, we estimate a mixed logit model of the location choice of multinational firms in Europe. In particular, we focus on the role of EU Cohesion Policy in attracting foreign investors from both within and outside Europe. We find that, after controlling for the role of agglomeration economies as well as a number of other regional and country characteristics and allowing for a very flexible correlation pattern among choices, Structural and Cohesion funds allocated by the EU to laggard regions have indeed contributed to attracting multinationals. These policies as well as other determinants play a different role in the case of European investors as opposed to non-European ones.
Resumo:
There is much speculation with regard to the potential cardioprotective benefits of equol, a microbial-derived metabolite of the isoflavone daidzein, which is produced in the large intestine after soy intake in 30% of Western populations. Although cross-sectional and retrospective data support favorable associations between the equol producer (EP) phenotype and cardiometabolic health, few studies have prospectively recruited EPs to confirm this association. The aim was to determine whether the acute vascular benefits of isoflavones differ according to EP phenotype and subsequently investigate the effect of providing commercially produced S-(–)equol to non-EPs. We prospectively recruited male EPs and non-EPs (n = 14/ group) at moderate cardiovascular risk into a double-blind, placebocontrolled crossover study to examine the acute effects of soy isoflavones (80-mg aglycone equivalents) on arterial stiffness [carotid-femoral pulse-wave velocity (cfPWV)], blood pressure, endothelial function (measured by using the EndoPAT 2000; Itamar Medical), and nitric oxide at baseline (0 h) and 6 and 24 h after intake. In a separate assessment, non-EPs consumed 40 mg S-(–)equol with identical vascular measurements performed 2 h after intake. After soy intake, cfPWV significantly improved in EPs at 24 h (cfPWV change from 0 h: isoflavone, 20.2 6 0.2 m/s; placebo, 0.6 6 0.2 m/s; P , 0.01), which was significantly associated with plasma equol concentrations (R = 20.36, P = 0.01). No vascular effects were observed in EPs at 6 h or in non-EPs at any time point. Similarly, no benefit of commercially produced S-(–)equol was observed in non-EPs despite mean plasma equol concentrations reaching 3.2 mmol/L. Acute soy intake improved cfPWV in EPs, equating to an 11–12% reduced risk of cardiovascular disease if sustained. However, a single dose of commercially produced equol had no cardiovascular benefits in non-EPs. These data suggest that the EP phenotype is critical in unlocking the vascular benefits of equol in men, and long-term trials should focus on confirming the implications of EP phenotype on cardiovascular health. This trial was registered at clinicaltrials.gov as NCT01530893. Am J Clin Nutr doi: 10.3945/ajcn.115.125690.
Resumo:
The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.