841 resultados para swd: Ubiquitous Computing
Resumo:
The existing internet computing resource, Biomolecules Segment Display Device (BSDD), has been updated with several additional useful features. An advanced option is provided to superpose the structural motifs obtained from a search on the Protein Data Bank (PDB) in order to see if the three-dimensional structures adopted by identical or similar sequence motifs are the same. Furthermore, the options to display structural aspects like inter- and intra-molecular interactions, ion-pairs, disulphide bonds, etc. have been provided.The updated resource is interfaced with an up-to-date copy of the public domain PDB as well as 25 and 90% non-redundant protein structures. Further, users can upload the three-dimensional atomic coordinates (PDB format) from the client machine. A free molecular graphics program, JMol, is interfaced with it to display the three-dimensional structures.
Resumo:
Effectiveness evaluation of aerospace fault-tolerant computing systems used in a phased-mission environment is rather tricky and difficult because of the interaction of its several degraded performance levels with the multiple objectives of the mission and the use environment. Part I uses an approach based on multiobjective phased-mission analysis to evaluate the effectiveness of a distributed avionics architecture used in a transport aircraft. Part II views the computing system as a multistate s-coherent structure. Lower bounds on the probabilities of accomplishing various levels of performance are evaluated.
Resumo:
This research studied distributed computing of all-to-all comparison problems with big data sets. The thesis formalised the problem, and developed a high-performance and scalable computing framework with a programming model, data distribution strategies and task scheduling policies to solve the problem. The study considered storage usage, data locality and load balancing for performance improvement in solving the problem. The research outcomes can be applied in bioinformatics, biometrics and data mining and other domains in which all-to-all comparisons are a typical computing pattern.
Resumo:
Location management problem that arise in mobile computing networks is addressed. One method used in location management is to designate sonic of the cells in the network as "reporting cells". The other cells in the network are "non-reporting cells". Finding an optimal set of reporting cells (or reporting cell configuration) for a given network. is a difficult combinatorial optimization problem. In fact this is shown to be an NP-complete problem. in an earlier study. In this paper, we use the selective paging strategy and use an ant colony optimization method to obtain the best/optimal set of reporting cells for a given a network.
Resumo:
Sensor networks represent an attractive tool to observe the physical world. Networks of tiny sensors can be used to detect a fire in a forest, to monitor the level of pollution in a river, or to check on the structural integrity of a bridge. Application-specific deployments of static-sensor networks have been widely investigated. Commonly, these networks involve a centralized data-collection point and no sharing of data outside the organization that owns it. Although this approach can accommodate many application scenarios, it significantly deviates from the pervasive computing vision of ubiquitous sensing where user applications seamlessly access anytime, anywhere data produced by sensors embedded in the surroundings. With the ubiquity and ever-increasing capabilities of mobile devices, urban environments can help give substance to the ubiquitous sensing vision through Urbanets, spontaneously created urban networks. Urbanets consist of mobile multi-sensor devices, such as smart phones and vehicular systems, public sensor networks deployed by municipalities, and individual sensors incorporated in buildings, roads, or daily artifacts. My thesis is that "multi-sensor mobile devices can be successfully programmed to become the underpinning elements of an open, infrastructure-less, distributed sensing platform that can bring sensor data out of their traditional close-loop networks into everyday urban applications". Urbanets can support a variety of services ranging from emergency and surveillance to tourist guidance and entertainment. For instance, cars can be used to provide traffic information services to alert drivers to upcoming traffic jams, and phones to provide shopping recommender services to inform users of special offers at the mall. Urbanets cannot be programmed using traditional distributed computing models, which assume underlying networks with functionally homogeneous nodes, stable configurations, and known delays. Conversely, Urbanets have functionally heterogeneous nodes, volatile configurations, and unknown delays. Instead, solutions developed for sensor networks and mobile ad hoc networks can be leveraged to provide novel architectures that address Urbanet-specific requirements, while providing useful abstractions that hide the network complexity from the programmer. This dissertation presents two middleware architectures that can support mobile sensing applications in Urbanets. Contory offers a declarative programming model that views Urbanets as a distributed sensor database and exposes an SQL-like interface to developers. Context-aware Migratory Services provides a client-server paradigm, where services are capable of migrating to different nodes in the network in order to maintain a continuous and semantically correct interaction with clients. Compared to previous approaches to supporting mobile sensing urban applications, our architectures are entirely distributed and do not assume constant availability of Internet connectivity. In addition, they allow on-demand collection of sensor data with the accuracy and at the frequency required by every application. These architectures have been implemented in Java and tested on smart phones. They have proved successful in supporting several prototype applications and experimental results obtained in ad hoc networks of phones have demonstrated their feasibility with reasonable performance in terms of latency, memory, and energy consumption.
Resumo:
Minimum Description Length (MDL) is an information-theoretic principle that can be used for model selection and other statistical inference tasks. There are various ways to use the principle in practice. One theoretically valid way is to use the normalized maximum likelihood (NML) criterion. Due to computational difficulties, this approach has not been used very often. This thesis presents efficient floating-point algorithms that make it possible to compute the NML for multinomial, Naive Bayes and Bayesian forest models. None of the presented algorithms rely on asymptotic analysis and with the first two model classes we also discuss how to compute exact rational number solutions.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organisations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
The concept of cloud computing services (CCS) is appealing to small and medium enterprises (SMEs). However, while there is a significant push by various authorities on SMEs to adopt the CCS, knowledge of the key considerations to adopt the CCS is very limited. We use the technology-organization-environment (TOE) framework to suggest that a strategic and incremental intent, understanding the organizational structure and culture, understanding the external factors, and consideration of the human resource capacity can contribute to sustainable business value from CCS. Using survey data, we find evidence of a positive association between these considerations and the CCS-related business objectives. We also find evidence of positive association between the CCS-related business objectives and CCS-related financial objectives. The results suggest that the proposed considerations can ensure sustainable business value from the CCS. This study provides guidance to SMEs on a path to adopting the CCS with the intention of a long-term commitment and achieving sustainable business value from these services.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organizations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
Stochastic volatility models are of fundamental importance to the pricing of derivatives. One of the most commonly used models of stochastic volatility is the Heston Model in which the price and volatility of an asset evolve as a pair of coupled stochastic differential equations. The computation of asset prices and volatilities involves the simulation of many sample trajectories with conditioning. The problem is treated using the method of particle filtering. While the simulation of a shower of particles is computationally expensive, each particle behaves independently making such simulations ideal for massively parallel heterogeneous computing platforms. In this paper, we present our portable Opencl implementation of the Heston model and discuss its performance and efficiency characteristics on a range of architectures including Intel cpus, Nvidia gpus, and Intel Many-Integrated-Core (mic) accelerators.
Resumo:
Among the iterative schemes for computing the Moore — Penrose inverse of a woll-conditioned matrix, only those which have an order of convergence three or two are computationally efficient. A Fortran programme for these schemes is provided.
Resumo:
Abstract is not available.
Resumo:
A rank-augmnented LU-algorithm is suggested for computing a generalized inverse of a matrix. Initially suitable diagonal corrections are introduced in (the symmetrized form of) the given matrix to facilitate decomposition; a backward-correction scheme then yields a desired generalized inverse.
Resumo:
We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, D (M) and E (M) for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant M (S) valence bond (VB) technique of solving spin Hamiltonians employing full spatial and spin symmetry adaptation and we illustrate this technique by solving the exchange Hamiltonian of the Cu6Fe8 system. Treating the anisotropy Hamiltonian as perturbation, we compute the D (M)and E(M) values for various eigenstates of the exchange Hamiltonian. Since, the dipolar contribution to the magnetic anisotropy is negligibly small, we calculate the molecular anisotropy from the single-ion anisotropies of the metal centers. We have studied the variation of D (M) and E(M) by rotating the single-ion anisotropies in the case of Mn12Ac and Fe-8 SMMs in ground and few low-lying excited states of the exchange Hamiltonian. In both the systems, we find that the molecular anisotropy changes drastically when the single-ion anisotropies are rotated. While in Mn12Ac SMM D (M) values depend strongly on the spin of the eigenstate, it is almost independent of the spin of the eigenstate in Fe-8 SMM. We also find that the D (M)value is almost insensitive to the orientation of the anisotropy of the core Mn(IV) ions. The dependence of D (M) on the energy gap between the ground and the excited states in both the systems has also been studied by using different sets of exchange constants.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.