981 resultados para substitution reactions on phosphane ligands


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work the influence of four different ligands present in the xylem sap of Quercus ilex (histidine, citric, oxalic and aspartic acids) on Ni(II) adsorption by xylem was investigated. Grinded xylem was trapped in acrylic columns and solutions of Ni(II), in the absence and presence of the four ligands prepared in KNO(3) 0-1 mol L(-1) at pH 5.5, were percolated through the column. Aliquots of solutions were recovered in the column end for Ni determination by graphite furnace atomic absorption spectrometry (GFAAS). The experimental. data to describe Ni sorption by xylem in both the presence and absence of ligands was better explained by the Freundlich isotherm model. The decreasing affinity order of ligands for Ni was: oxalic acid > citric acid > histidine > aspartic acid. On the other hand, the Ni(II) adsorption by xylem increased following the inverse sequence of ligands. Potentiometric titrations of acidic groups were carried out to elucidate the sorption site groups available in Q. ilex xylem. The potentiometric titration has shown three sorption sites: pK(a) 2.6 (57.7% of the sorption sites), related to monobasic aliphatic carboxylic acids or nitrogen aromatic bases, pK(a) 8.1 (9.6%) and pK(a) 9.9 (32.7%), related to phenolic groups. (C) 2008 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to evaluate the effects of uncertainty about direction of mechanical perturbation and supra-postural task constraint on postural control young adults had their upright stance perturbed while holding a tray in a horizontal position Stance was perturbed by moving forward or backward a supporting platform contrasting situations of certainty versus uncertainty of direction of displacement Increased constraint on postural stability was Imposed by a supra-postural task of equilibrating a cylinder on the tray Performance was assessed through EMG of anterior leg muscles angular displacement of the main Joints involved in the postural reactions and displacement of the tray Results showed that both certainty on the direction of perturbation and Increased supra-postural task constraint led to decreased angular displacement of the knee and the hip Furthermore combination of certainty and high supra-postural task constraint produced shorter latency of muscular activation Such postural responses were paralleled by decreased displacement of the tray Thesi results suggest a functional integration between the tasks with central set priming reactive postural responses from contextual cues and Increased stability demand (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spent coffee grounds (SCG) the residual materials obtained during the processing of raw coffee powder to prepare instant coffee are the main coffee Industry residues In the present work this material was chemically characterized and subsequently submitted to a dilute acid hydrolysis aiming to recover the hemicellulose sugars Reactions were performed according to experimental designs to verify the effects of the variables H(2)SO(4) concentration liquid-to-solid ratio temperature and reaction time on the efficiency of hydrolysis SCG was found to be rich in sugars (45 3% w/w) among of which hemicellulose (constituted by mannose galactose and arabinose) and cellulose (glucose homopolymer) correspond to 367% (w/w) and 8 6% (w/w) respectively Optimal conditions for hemicellulose sugars extraction consisted in using 100 mg acid/g dry matter 10g liquid/g solid at 163 degrees C for 45 min Under these conditions hydrolysis efficiencies of 100% 774% and 895% may be achieved for galactan mannan and arabinan respectively corresponding to a hemicellulose hydrolysis efficiency of 874% (C) 2010 Elsevier Ltd All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of glycerol on xylose-to-xylitol bioconversion by Candida guilliermondii was evaluated by its addition (0.7 and 6.5 g/l) to semidefined media (xylose as a substrate). The glycerol concentrations were chosen based on the amounts produced during previous studies on xylitol production by C. guilliermondii. Medium without glycerol addition (control) and medium containing glycerol (53 g/l) in substitution to xylose were also evaluated. According to the results, the addition of 0.7 g/l glycerol to the fermentation medium favored not only the yield (Y (P/S) = 0.78 g/g) but also the xylitol productivity (Q (P) = 1.13 g/l/h). During the xylose-to-xylitol bioconversion, the formation of byproducts (glycerol and ethanol) was observed for all conditions employed. In relation to the cellular growth, glycerol as the only carbon source for C. guilliermondii was better than xylose or xylose and glycerol mixtures, resulting in a maximum cellular concentration (5.34 g/l).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The brown rot fungus Wolfiporia cocos and the selective white rot fungus Perenniporia medulla-panis produce peptides and phenolate-derivative compounds as low molecular weight Fe(3+)-reductants. Phenolates were the major compounds with Fe(3+)-reducing activity in both fungi and displayed Fe(3+)-reducing activity at pH 2.0 and 4.5 in the absence and presence of oxalic acid. The chemical structures of these compounds were identified. Together with Fe(3+) and H(2)O(2) (mediated Fenton reaction) they produced oxygen radicals that oxidized lignocellulosic polysaccharides and lignin extensively in vitro under conditions similar to those found in vivo. These results indicate that, in addition to the extensively studied Gloeophyllum trabeum-a model brown rot fungus-other brown rot fungi as well as selective white rot fungi, possess the means to promote Fenton chemistry to degrade cellulose and hemicellulose, and to modify lignin. Moreover, new information is provided, particularly regarding how lignin is attacked, and either repolymerized or solubilized depending on the type of fungal attack, and suggests a new pathway for selective white rot degradation of wood. The importance of Fenton reactions mediated by phenolates operating separately or synergistically with carbohydrate-degrading enzymes in brown rot fungi, and lignin-modifying enzymes in white rot fungi is discussed. This research improves our understanding of natural processes in carbon cycling in the environment, which may enable the exploration of novel methods for bioconversion of lignocellulose in the production of biofuels or polymers, in addition to the development of new and better ways to protect wood from degradation by microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a white-rot fungus used in biopulping processes and seems to use the fatty acid peroxidation reactions initiated by manganese-peroxidase (MnP) to start lignin degradation. The present work shows that C. subvermispora was able to peroxidize unsaturated fatty acids during wood biotreatment under biopulping conditions. In vitro assays showed that the extent of linoleic acid peroxidation was positively correlated with the level of MnP recovered from the biotreated wood chips. Milled wood was treated in vitro by partially purified MnP and linoleic acid. UV spectroscopy and size exclusion chromatography (SEC) showed that soluble compounds similar to lignin were released from the milled wood. SEC data showed a broad elution profile compatible with low molar mass lignin fractions. MnP-treated milled wood was analyzed by thioacidolysis. The yield of thioacidolysis monomers recovered from guaiacyl and syringyl units decreased by 33% and 20% in MnP-treated milled wood, respectively. This has suggested that lignin depolymerization reactions have occurred during the MnP/linoleic acid treatment. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.63 mu M/g min) was achieved by Candida rugosa lipase, while the highest interesterification yield (31%, in 72 h) was achieved by lipase from Rhizopus oryzae, with the production of about 15 mM of the triglycerides C(50) and C(52). This lipase also showed a good performance in butyl butyrate synthesis, with an esterification activity of 171.14 mu M/g min. The results demonstrated the feasibility of using lipases from C. rugosa for esterification and R. oryzae lipase for both esterification and interesterification reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases. In this work, we present the construction and evaluation of a simple miniaturized optical system, which integrates a novel flow cell configuration to carry out chemiluminescence (CL) measurements using a simple photodiode. It consists of a micro-mixer based on a vortex structure, which has been constructed by means of the low-temperature cofired ceramics (LTCC) technology. This mixer not only efficiently promotes the CL reaction due to the generated high turbulence but also allows the detection to be carried out in the same area, avoiding intensity signal losses. As a demonstration, a flow injection system has been designed and optimized for the detection of cobalt(H) in water samples. It shows a linear response between 2 and 20 mu M with a correlation of r > 0.993, a limit of detection of 1.1 mu M, a repeatability of RSD = 12.4 %, and an analysis time of 17 s. These results demonstrate the suitability of the proposal to the determination of compounds involved in CL reactions by means of an easily constructed versatile device based on low-cost instrumentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha(-1) (K(1.5), K(3.0), 1(4.5, respectively) as KCl, 3.0 kmol K ha(-1) applied as K(2)SO(4), 3.0 kmol Na ha(-1) (Na(3.0)) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha(-1) (K(1.5) + Na(1.5)) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients. A positive effect of NaCl applications on the growth of E. grandis trees was observed. NaCl and KCl additions in treatments Na(3.0) and K(3.0) increased above-ground biomass by 56% and 130% three years after planting, respectively, in comparison with the C treatment. By contrast, accumulated litterfall up to age 3 years was not significantly modified. NaCl applications in the Na(3.0) treatment significantly increased Na accumulation in above-ground tree components but did not modify K accumulation, whatever the sampling age. A partial substitution of K by Na in tree physiology, as observed for various agricultural crops, might explain this behaviour. Our results suggest the possibility of applying inexpensive K fertilizers, which are less purified in Na, and explain why high yields are achieved without K fertilizer applications in areas with large dry depositions of marine aerosols. Further investigations are necessary to identify the processes involving Na in Eucalyptus tree physiology. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of refrigeration, freezing and substitution of milk fat by inulin and whey protein concentrate (WPC) on the texture and sensory features of synbiotic guava mousses supplemented with the probiotic, Lactobacillus acidophilus La-5, and the prebiotic fibre oligofructose, were studied. The frozen storage (-18 +/- 1 degrees C), followed by thawing at 4 degrees C before the analyses, and the complete replacement of the milk fat by inulin plus WPC, led to significant differences in the instrumental texture parameters of mousses (P < 0.05). Nonetheless, these changes did not affect the sensory acceptability of the products studied. The frozen storage may be employed to extend the shelf-life of synbiotic guava mousses. Additionally, to obtain a texture profile similar to the traditional product, the simultaneous addition of inulin and WPC is recommended only for the partial replacement of milk fat in refrigerated and frozen mousses, and the total proportion of both ingredients together should not exceed 2.6%. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the consumer attitude to food irradiation in Sao Paulo, Brazil, through a qualitative research perspective. Three focus groups were conducted with 30 consumers, responsible for food choices and purchases. Both irradiated and nonirradiated food samples were served in the sessions to motivate the discussion and elicit the participants knowledge, opinions, feelings and concerns towards the irradiation process. Reactions were similar among the groups and differences between the irradiated and the nonirradiated samples were hardly perceived. When provided with positive information about irradiation and its benefits to foods and human health, many people still remained suspicious about the safety of the technology. Risk perception seemed to be related to unease and lack of knowledge about nuclear power and its non-defense use. Participants claimed for more transparency in communication about risks and benefits of irradiated foods to the human health, especially with respect to the continued consumption. Industrial relevance: Irradiation is an emerging food processing technology, which has been gaining interest by food technologists, producers and manufacturers all over the world in the last decades. Irradiation is suitable for disinfestation, microorganism load reduction or sterilization, assuring the safety, as well as having benefits in the shelf-life of foodstuffs. Food irradiation is approved in many countries and its use in food processing is endorsed by several reputed authorities, such as FAD and USDA. Despite the approval and recommendation, this technology still remains underutilized not only in Brazil, but also in other countries. The main reason appears to be the consumer concerns and doubts about the use of radiations in food processing. To develop communication strategies in promotion of irradiated foods it is necessary to investigate consumer attitudes, knowledge. opinions, as well as fears, with respect to the use of radiation in food processing. It is well-known that consumer views on technology may vary from a culture to another. So, findings from consumer research in a country may certainly not reflect the consumer views in other countries. In this sense, Brazilian studies focused on consumer views on food irradiation are necessary to gain understanding on how the local market accepts the technology. Brazil is one of the most important food producers in the world and an emerging consumer market with a population of about 184 million people. Food irradiation is regulated in Brazil since 1973, but to date only a few food ingredients are subjected to irradiation. The wide use of irradiation in food processing would favor Brazilian producers in the quality and safety assurance of food products, both for the local market and for exports. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The interaction between lipoxygenase-active soybean flour (LOX) and ascorbic acid (AA), on colour, rheological and sensory properties of wheat bread was studied with the aim of reducing the applied quantity of additives in bread formulations. RESULTS: The ascorbic acid (0-500 ppm) and active soybean flour (0-1%) mixture improved bread-crumb colour by lowering the yellow hue in a higher proportion than those expressed by the components alone, characterising a synergistic mechanism ((y) over cap (b) = 15.1- (1.7 x LOX) - (0.5 x AA) - (5.8 x LOX x AA), where : (y) over cap (b) represent the estimated value for the yellow hue parameter). No differences in flavour and porosity were seen between the samples. As supported by the instrumental methods, breads made with active soybean flour and ascorbic acid (LOX + AA) had whiter crumbs and were softer and springier than controls as assessed by a trained sensory panel. In summary, the combination of both active soybean flour and ascorbic acid showed synergism, promoting a greater bleaching effect than when used alone. CONCLUSION: These results suggest the potential use of active soybean flour as a synergistic ingredient in the substitution of artificial additives in bread making. Since the interaction on the bleaching response was not linear and active soybean flour showed a higher iron concentration (66.40 +/- 4.23 mu g g(-1)) than non-active soybean flour (52.30 +/- 0.40 mu g g(-1)), more studies are warranted to establish the biochemical mechanisms involved in this interaction. (c) 2007 Society of Chemical Industry.